Publicado

2009-07-01

On a general type of p–adic parabolic equations

Un tipo general de ecuaciones parabólicas p–ádicas

Palabras clave:

Parabolic equations, Markov processes, p–adic numbers, ultrametric diffusion (en)
Ecuaciones parabólicas, procesos de Markov, números p–ádicos, difusión ultramétrica (es)

Descargas

Autores/as

  • John Jaime Rodríguez-Vega Universidad Nacional de Colombia, Bogotá, Colombia

Abstract. In this paper we study the existence and uniqueness of the Cauchy problem for a general type of p–adic parabolic pseudo-differential operators constructed using the Taibleson operator. The results presented here constitute an extension of some results obtained by Zúñiga-Galindo and the author [13].

En este artículo se estudia la existencia y unicidad de soluciones del problema de Cauchy asociado a un tipo general de ecuación parabólica p–ádicos, construida usando el operador de Taibleson. Los resultados presentados aquí constituyen una extensión de algunos de los resultados obtenidos por Zúñiga-Galindo y el autor en [13].

Referencias

S. Albeverio and W. Karwoski, Diffusion in p–adic numbers, Gaussian Random Fields (K. Ito and H. Hida, eds.), World Scientific, Singapore, 1991, pp. 86-99.

_____, A random walk on p–adics: the generator and its spectrum, Stochastic Process. Appl. 53 (1994), 1-22.

A. V. Avetisov, A. H. Bikulov, S. V. Kozyrev, and V. A. Osipov, p–adic models of ultrametric diffusion constrained by hierarchical energy land-scapes, J. Phys. A: Math. Gen. 35 (2002), 177-189.

A. V. Avetisov, A. H. Bikulov, and V. A. Osipov, p–adic description of characteristic relaxation in complex systems, J. Phys. A: Math. Gen. 36 (2003), 4239-4246.

A. Friedman, Partial Differential Equations of the Parabolic Type, Prentice-Hall, New Jersey, 1964.

A. Yu. Khrennikov, p–adic Valued Distributions in Mathematical Physics, Kluwer, Dordrecht, 1994.

_____, Non-archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer, Dordrecht, 1997.

A. N. Kochubei, Parabolic pseudodifferential equations, hypersingular integrals, and Markov processes, Math. USSR Izvestiya 33 (1989), 233-259.

_____, Parabolic equations over the field of p –adic numbers, Math. USSR Izvestiya 39 (1992), 1263-1280.

_____, Pseudodifferential Equations and Stochastics over non-Archimedean Fields, Marcel Dekker, New York, 2001.

O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, 1968.

R. Rammal and G. Toulouse, Ultrametricity for physicists, Rev. Modern Physics 58 (1986), 765-778.

J. J. Rodriguez-Vega and W. A. Züniga-Galindo, Taibleson operators, p –adic parabolic equations and ultrametric diffusion, Pac. Jour. Math. 237 (2008), 327-347.

M. H. Taibleson, Fourier Analysis on Local Fields, Princeton University Press, Princeton, 1975.

V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p –adic Analysis and Mathematical Physics, World Scientific Publishing, River Edge, NJ, 1994.

W. A. Züniga-Galindo, Parabolic equations and Markov processes over p –adic fields, Potential Analysis 28 (2008), 185-200.

Cómo citar

APA

Rodríguez-Vega, J. J. (2009). On a general type of p–adic parabolic equations. Revista Colombiana de Matemáticas, 43(2), 101–114. https://revistas.unal.edu.co/index.php/recolma/article/view/95542

ACM

[1]
Rodríguez-Vega, J.J. 2009. On a general type of p–adic parabolic equations. Revista Colombiana de Matemáticas. 43, 2 (jul. 2009), 101–114.

ACS

(1)
Rodríguez-Vega, J. J. On a general type of p–adic parabolic equations. rev.colomb.mat 2009, 43, 101-114.

ABNT

RODRÍGUEZ-VEGA, J. J. On a general type of p–adic parabolic equations. Revista Colombiana de Matemáticas, [S. l.], v. 43, n. 2, p. 101–114, 2009. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/95542. Acesso em: 22 ene. 2025.

Chicago

Rodríguez-Vega, John Jaime. 2009. «On a general type of p–adic parabolic equations». Revista Colombiana De Matemáticas 43 (2):101-14. https://revistas.unal.edu.co/index.php/recolma/article/view/95542.

Harvard

Rodríguez-Vega, J. J. (2009) «On a general type of p–adic parabolic equations», Revista Colombiana de Matemáticas, 43(2), pp. 101–114. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95542 (Accedido: 22 enero 2025).

IEEE

[1]
J. J. Rodríguez-Vega, «On a general type of p–adic parabolic equations», rev.colomb.mat, vol. 43, n.º 2, pp. 101–114, jul. 2009.

MLA

Rodríguez-Vega, J. J. «On a general type of p–adic parabolic equations». Revista Colombiana de Matemáticas, vol. 43, n.º 2, julio de 2009, pp. 101-14, https://revistas.unal.edu.co/index.php/recolma/article/view/95542.

Turabian

Rodríguez-Vega, John Jaime. «On a general type of p–adic parabolic equations». Revista Colombiana de Matemáticas 43, no. 2 (julio 1, 2009): 101–114. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/95542.

Vancouver

1.
Rodríguez-Vega JJ. On a general type of p–adic parabolic equations. rev.colomb.mat [Internet]. 1 de julio de 2009 [citado 22 de enero de 2025];43(2):101-14. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/95542

Descargar cita

Visitas a la página del resumen del artículo

41

Descargas

Los datos de descargas todavía no están disponibles.