Veröffentlicht
A Note on the Range of a Derivation
Una nota sobre el rango de una derivada
DOI:
https://doi.org/10.15446/recolma.v56n2.108371Schlagworte:
Generalized derivation, Fuglede-Putnam property, D- symmetric operator, P-symmetric operator, Compact operator (en)Derivada generalizada, propiedad de Fuglede-Putnam, operador D-simétrico, operador P-simétrico, operador compacto (es)
Downloads
Let H be a separable infinite dimensional complex Hilbert space, and let L(H) denote the algebra of all bounded linear operators on H into itself. Given A, B ∈ L(H), define the generalized derivation δA, B ∈ L(L(H)) by δA, B(X) = AX - XB. An operator A ∈ L(H) is P-symmetric if AT = TA implies AT* = T* A for all T ∈ C1(H) (trace class operators). In this paper, we give a generalization of P-symmetric operators. We initiate the study of the pairs (A, B) of operators A, B ∈ L(H) such that R(δA, B) W* = R(δA, B) W*, where R(δA, B) W* denotes the ultraweak closure of the range of δA, B. Such pairs of operators are called generalized P-symmetric. We establish a characterization of those pairs of operators. Related properties of P-symmetric operators are also given.
Sea H un espacio de Hilbert separable sobre los complejos y denote por L(H) al álgebra de los operadores acotados de H es sí mismo. Dados A, B ∈ L(H), defina la derivada generalizada δA, B ∈ L(L(H)) como δA, B(X) = AX - XB. Un operador A ∈ L(H) es P-simétrico si la condición AT = TA implica que AT* = T* A para todo T ∈ C1(H) (los operadores de clase de traza). En este artículo presentamos una generalizacion de los operadores P-simétricos. En este artículo estudiamos pares (A, B) de operadores A, B ∈ L(H) tales que R(δA, B) W* = R(δA, B) W*, donde R(δA, B) W* denota la clausura ultradébil del rango δA, B. A esta clase de operadores los llamamos operadores P-simétricos generalizados. En este artículo damos una caracterización de esta clase de pares de operadores y presentamos propiedades de los operadores P-simétricos generalizados.
Literaturhinweise
J. H. Anderson, J. W. Bunce, J. A. Deddens, and J. P. Williams, C*-algebras and derivation ranges, Acta Sci. Math. (Szeged) 40 (1978), no. 3-4, 211-227.
C. A. Bergerand and B. I. Shaw, Self-commutators of multicyclic hyponormal operators are always trace class, Bull. Amer. Math. Soc. 79 (1973), 1193-1199. DOI: https://doi.org/10.1090/S0002-9904-1973-13375-0
S. Bouali and Y. Bouhafsi, On the range-kernel orthogonality and p-symmetric operators, Math. Inequal. Appl. 9 (2006), no. 3, 511-519. DOI: https://doi.org/10.7153/mia-09-49
S. Bouali and Y. Bouhafsi, P-symmetric operators and the range of a subnormal derivation, Acta Sci. Math(Szeged) 72 (2006), no. 3-4, 701-708.
S. Bouali and J. Charles, Extension de la notion d'opérateur D-symétrique I, Acta Sci. Math. (Szeged) 51 (1993), no. 1-4, 517-525.
S. Bouali and J. Charles, Extension de la notion d'opérateur D-symétrique II, Linear algebra Appl. 225 (1995), no. 3, 175-185. DOI: https://doi.org/10.1016/0024-3795(94)00003-V
S. Bouali and M. Ech-chad, Generalized D-Symmetric operators II, Canad. Math. Bull. 54 (2011), no. 1, 21-27. DOI: https://doi.org/10.4153/CMB-2010-094-2
B. C. Gupta and P. B. Ramanujan, A note on D-symmetric operators, Bull. Austral. Math. Soc. 23 (1981), no. 3, 471-475. DOI: https://doi.org/10.1017/S0004972700007334
C. R. Rosentrater, Not every D-symmetric operator is GCR, Proc. Amer. Math. Soc. 81 (1981), no. 3, 443-446. DOI: https://doi.org/10.2307/2043483
C. R. Rosentrater, Compact operators and derivations induced by weighted shifts, Pacific J. Math. 104 (1983), no. 2, 465-470. DOI: https://doi.org/10.2140/pjm.1983.104.465
J. G. Stampfli, On self-adjoint derivation ranges, Pacific J. Math. 82 (1979), no. 1, 257-277. DOI: https://doi.org/10.2140/pjm.1979.82.257
J. P. Williams, On the range of a derivation, Pacific J. Math. 38 (1971), 273-279. DOI: https://doi.org/10.2140/pjm.1971.38.273
J. P. Williams, Derivation ranges: open problems. Topics in modern operator theory. Operator theory: Advances and Applications, 2, Birkhäuser-Verlag (1981), 319-328. DOI: https://doi.org/10.1007/978-3-0348-5456-6_21
T. Yoshino, Subnormal operators with a cyclic vector, Tôhoku Math. J. 21 (1969), 47-55. DOI: https://doi.org/10.2748/tmj/1178243033
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
CrossRef Cited-by
1. Soukaina Madani, Mohamed Morjane, Mohamed Ech-Chad. (2024). On the Δ-Symmetric Operators and Applications. 2024 7th International Conference on Advanced Communication Technologies and Networking (CommNet). , p.1. https://doi.org/10.1109/CommNet63022.2024.10793273.
2. Mohamed Mourabet, Yassir Alaoua, Mohamed Ech-Chad. (2024). A Note on an elementary Operator with Quasi-M-Hyponormal Operator Entries. 2024 7th International Conference on Advanced Communication Technologies and Networking (CommNet). , p.1. https://doi.org/10.1109/CommNet63022.2024.10793354.