Veröffentlicht
Normality of k-Matching Polytopes of Bipartite Graphs
Normalidad del politopo de k-emparejamientos de grafos bipartitos
DOI:
https://doi.org/10.15446/recolma.v57n2.115853Schlagworte:
Polytopes, matchings, matching polytopes, normal polytopes, bipartite graphs (en)Politopos, emparejamientos, politopos de emparejamiento, politopos normales, grafos bipartitos (es)
Downloads
The k-matching polytope of a graph is the convex hull of all its matchings of a given size k when they are considered as indicator vectors. In this paper, we prove that the k-matching polytope of a bipartite graph is normal, that is, every integer point in its t-dilate is the sum of t integers points of the original polytope. This generalizes the known fact that Birkhoff polytopes are normal. As a preliminary result, we prove that for bipartite graphs the k-matching polytope is equal to the fractional k-matching polytope, having thus the H-representation of the polytope. This generalizes the Birkhoff-Von Neumann Theorem which establish that every doubly stochastic matrix can be written as a convex combination of permutation matrices.
El politopo de k-emparejamientos de un grafo es la envolvente convexa de todos sus emparejamientos de un tamaño dado k cuando estos son considerados como vectores indicadores. En este artículo, demostramos que el politopo de k-emparejamientos de un grafo bipartito es normal, es decir, todo punto entero en su t-dilatación es la suma de t puntos enteros del politopo original. Esto generaliza el resultado conocido de que los politopos de Birkhoff son normales. Como resultado preliminar, demostramos que para grafos bipartitos el politopo de k-emparejamientos es igual al politopo de k-emparejamientos fraccional, teniendo así la H-representación del politopo. Esto generaliza el Teorema de Birkhoff-Von Neumann que establece que toda matriz doblemente estocástica puede ser escrita como una combinación convexa de matrices de permutación
Literaturhinweise
R. E. Behrend, Fractional perfect b-matching polytopes i: General theory, Linear Algebra and its Applications 439 (2013), no. 12, 3822-3858.
W. Bruns and J. Gubeladze, Polytopes, rings, and k-theory, Springer, 2009.
D. A. Cox, C. Haase, T. Hibi, and A. Higashitani, Integer decomposition property of dilated polytopes, The Electronic Journal of Combinatorics 21 (2014), no. 4, P4.28.
D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, vol. 124, American Mathematical Soc., 2011.
D-Z. Du and K-I. Ko, Theory of computational complexity, vol. 58, John Wiley & Sons, 2011.
J. Gill and S. Linusson, The k-assignment polytope, Discrete Optimization 6 (2009), no. 2, 148-161.
J. Gubeladze, Normal polytopes: Between discrete, continuous, and random, Journal of Pure and Applied Algebra 227 (2023), no. 2, 107187.
J. De Loera, J. Rambau, and F. Santos, Triangulations: structures for algorithms and applications, vol. 25, Springer Science & Business Media, 2010.
L. Lovasz and M. D. Plummer, Matching theory, vol. 367, American Mathematical Soc., 2009.
J. C. Torres, The slack model in the study of polytopes, Ph.D. thesis, Universidad de los Andes, 2020.