Veröffentlicht

2010-07-01

An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition

Una caracterización algebraica de las variedades afines con G-estructura que satisfacen una condición de homogeneidad

Schlagworte:

Infinitesimally homogeneous manifold, Inner torsion, G-structures. (en)
Variedad infinitesimalmente homogénea, torsión interna, G-estructuras. (es)

Autor/innen

  • Carlos Alberto Marín Universidad de Antioquia
We give an algebraic characterization of the possible characteristic tensors of an infinitesimally homogeneous affine manifold with G-structure. Such concepts were introduced in [6].

Presentamos una caracterización algebraica de los posibles tensores característicos de una variedad infinitesimalmente homogénea con G-estructura. Tales conceptos son introducidos en [6].

Untitled Document
An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition

Una caracterización algebraica de las variedades afines con G-estructura que satisfacen una condición de homogeneidad
CARLOS ALBERTO MARÍN1

1Universidad de Antioquia, Medellín, Colombia. Email:camara@matematicas.udea.edu.co 


Abstract

We give an algebraic characterization of the possible characteristic tensors of an infinitesimally homogeneous affine manifold with G-structure. Such concepts were introduced in [6].

Key words: Infinitesimally homogeneous manifold, Inner torsion, G-structures.


2000 Mathematics Subject Classification: 53A15, 53B05, 53C10, 53C30.

Resumen

Presentamos una caracterización algebraica de los posibles tensores característicos de una variedad infinitesimalmente homogénea con G-estructura. Tales conceptos son introducidos en [6].

Palabras clave: Variedad infinitesimalmente homogénea, torsión interna, G-estructuras.


Texto completo disponible en PDF


References

[1] M. Dajczer, Submanifolds and Isometric Immersions, Publish or Perish, Houston, United States, 1990.

[2] B. Daniel, `Isometric Immersions into 3-Dimensional Homogeneous Manifolds´, Comment. Math. Helv. 82, 1 (2007), 87-131.

[3] B. Daniel, `Isometric Immersions into Sn\timesR and Hn\timesR and Applications to Minimal Surfaces´, Trans. Am. Math. Soc. 361, 12 (2009), 6255-6282.

[4] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic press, New York, United States, 1978.

[5] P. Piccione and D. Tausk, The Theory of Connections and G-Structures: Applications to Affine and Isometric Immersions, IMPA, Rio de Janeiro, Brazil, 2006.

[6] P. Piccione and D. Tausk, `An Existence Theorem for G-Structure Preserving Affine Immersions´, Indiana Univ. Math. J 57, 3 (2008), 1431-1465.

(Recibido en septiembre de 2010. Aceptado en octubre de 2010)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv44n2a07, 
    AUTHOR  = {Marín, Carlos Alberto}, 
    TITLE   = {{An Algebraic Characterization of Affine Manifolds with \boldsymbol{G}-Structure Satisfying a Homogeneity Condition}}, 
    JOURNAL = {Revista Colombiana de Matemáticas}, 
    YEAR    = {2010}, 
    volume  = {44}, 
    number  = {2}, 
    pages   = {149-165} 
}

Zitationsvorschlag

APA

Marín, C. A. (2010). An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition. Revista Colombiana de Matemáticas, 44(2), 149–165. https://revistas.unal.edu.co/index.php/recolma/article/view/28574

ACM

[1]
Marín, C.A. 2010. An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition. Revista Colombiana de Matemáticas. 44, 2 (Juli 2010), 149–165.

ACS

(1)
Marín, C. A. An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition. rev.colomb.mat 2010, 44, 149-165.

ABNT

MARÍN, C. A. An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition. Revista Colombiana de Matemáticas, [S. l.], v. 44, n. 2, p. 149–165, 2010. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/28574. Acesso em: 22 jan. 2025.

Chicago

Marín, Carlos Alberto. 2010. „An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition“. Revista Colombiana De Matemáticas 44 (2):149-65. https://revistas.unal.edu.co/index.php/recolma/article/view/28574.

Harvard

Marín, C. A. (2010) „An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition“, Revista Colombiana de Matemáticas, 44(2), S. 149–165. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/28574 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
C. A. Marín, „An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition“, rev.colomb.mat, Bd. 44, Nr. 2, S. 149–165, Juli 2010.

MLA

Marín, C. A. „An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition“. Revista Colombiana de Matemáticas, Bd. 44, Nr. 2, Juli 2010, S. 149-65, https://revistas.unal.edu.co/index.php/recolma/article/view/28574.

Turabian

Marín, Carlos Alberto. „An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition“. Revista Colombiana de Matemáticas 44, no. 2 (Juli 1, 2010): 149–165. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/28574.

Vancouver

1.
Marín CA. An Algebraic Characterization of Affine Manifolds with G-Structure Satisfying a Homogeneity Condition. rev.colomb.mat [Internet]. 1. Juli 2010 [zitiert 22. Januar 2025];44(2):149-65. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/28574

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

164

Downloads

Keine Nutzungsdaten vorhanden.