Veröffentlicht

1985-07-01

Best approximation in vector valued function spaces

Schlagworte:

Unit circle, separable Hilbert space, space of bounded, holomorphic functions i (es)

Autor/innen

  • Roshdi Khalil University of Michigan

Let T be the unit circle, and m be the normalized Lebesgue measure on T. If H is a separable Hilbert space, we let LT,H) be the space of essentially bounded functions on T with values in H. Continuous functions with values in H are denoted by C(T,H), and H(T,H) is the space of bounded holomorphic functions in the unit disk with values in H. The object of this paper is to prove that (H+C)(T,H) is proximinal in L(T,H). This generalizes the scalar valued case done by Axler, S. et al. We also prove that (H+C)(T,l) |H(T,l) is an M-ideal of L(T,l) | H (T, l), and V(T,l) is an M-ideal of L(T, l)whenever V is an M-ideal of L, where V(T,l∞) {g ϵ L(T,l): <g(t), δn > ϵ V for all n}.

 

Zitationsvorschlag

APA

Khalil, R. (1985). Best approximation in vector valued function spaces. Revista Colombiana de Matemáticas, 19(3-4), 313–322. https://revistas.unal.edu.co/index.php/recolma/article/view/32639

ACM

[1]
Khalil, R. 1985. Best approximation in vector valued function spaces. Revista Colombiana de Matemáticas. 19, 3-4 (Juli 1985), 313–322.

ACS

(1)
Khalil, R. Best approximation in vector valued function spaces. rev.colomb.mat 1985, 19, 313-322.

ABNT

KHALIL, R. Best approximation in vector valued function spaces. Revista Colombiana de Matemáticas, [S. l.], v. 19, n. 3-4, p. 313–322, 1985. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/32639. Acesso em: 17 nov. 2024.

Chicago

Khalil, Roshdi. 1985. „Best approximation in vector valued function spaces“. Revista Colombiana De Matemáticas 19 (3-4):313-22. https://revistas.unal.edu.co/index.php/recolma/article/view/32639.

Harvard

Khalil, R. (1985) „Best approximation in vector valued function spaces“, Revista Colombiana de Matemáticas, 19(3-4), S. 313–322. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/32639 (Zugegriffen: 17 November 2024).

IEEE

[1]
R. Khalil, „Best approximation in vector valued function spaces“, rev.colomb.mat, Bd. 19, Nr. 3-4, S. 313–322, Juli 1985.

MLA

Khalil, R. „Best approximation in vector valued function spaces“. Revista Colombiana de Matemáticas, Bd. 19, Nr. 3-4, Juli 1985, S. 313-22, https://revistas.unal.edu.co/index.php/recolma/article/view/32639.

Turabian

Khalil, Roshdi. „Best approximation in vector valued function spaces“. Revista Colombiana de Matemáticas 19, no. 3-4 (Juli 1, 1985): 313–322. Zugegriffen November 17, 2024. https://revistas.unal.edu.co/index.php/recolma/article/view/32639.

Vancouver

1.
Khalil R. Best approximation in vector valued function spaces. rev.colomb.mat [Internet]. 1. Juli 1985 [zitiert 17. November 2024];19(3-4):313-22. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/32639

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

107

Downloads

Keine Nutzungsdaten vorhanden.