Best approximation in vector valued function spaces
Schlagworte:
Unit circle, separable Hilbert space, space of bounded, holomorphic functions i (es)Downloads
Let T be the unit circle, and m be the normalized Lebesgue measure on T. If H is a separable Hilbert space, we let L∞T,H) be the space of essentially bounded functions on T with values in H. Continuous functions with values in H are denoted by C(T,H), and H∞(T,H) is the space of bounded holomorphic functions in the unit disk with values in H. The object of this paper is to prove that (H∞+C)(T,H) is proximinal in L∞(T,H). This generalizes the scalar valued case done by Axler, S. et al. We also prove that (H∞+C)(T,l∞) |H∞(T,l∞) is an M-ideal of L∞(T,l∞) | H∞ (T, l∞), and V(T,l∞) is an M-ideal of L∞(T, l∞)whenever V is an M-ideal of L∞, where V(T,l∞) {g ϵ L∞(T,l∞): <g(t), δn > ϵ V for all n}.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 1985 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.