Veröffentlicht

2000-07-01

Does Newton's method for set-valued maps converges uniformly in mild differentiability context?

Schlagworte:

Set-valued maps, Aubin continuity, generalized equations, Newton's method, superlinear uniform convergence (es)

Autor/innen

  • Alain Pietrus Université de Poitiers

In this article, we study the existence of Newton-type sequence for solving the equation y ϵ f(𝓍) + F(𝓍) where y is a small parameter, f is a function whose Fréchet derivative satisfies a Holder condition of the form II∇f(𝓍k) -∇f(x2)∥ ≤ K ∥lx1 - x2d and F is a set-valued map between two Banach spaces X and Y. We prove that the Newton-type method y ∈ f(𝓍k) +∇f(𝓍k)(𝓍k+1 - 𝓍k ) +F(𝓍k+1), is locally convergent to a solution of  y ϵ f(𝓍) + F(𝓍) if the set valued map (f(x* )+ ∇f(x* )(∙-𝓍*)+F(∙))-1 is Aubin continuous at (0,𝓍*) where 𝓍* is a solution of 0 ϵ f(𝓍) + F(𝓍). Moreover, we show that this convergence is superlinear uniformly in the parameter y and quadratic when d = 1.

Zitationsvorschlag

APA

Pietrus, A. (2000). Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?. Revista Colombiana de Matemáticas, 34(2), 49–56. https://revistas.unal.edu.co/index.php/recolma/article/view/33770

ACM

[1]
Pietrus, A. 2000. Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?. Revista Colombiana de Matemáticas. 34, 2 (Juli 2000), 49–56.

ACS

(1)
Pietrus, A. Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?. rev.colomb.mat 2000, 34, 49-56.

ABNT

PIETRUS, A. Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?. Revista Colombiana de Matemáticas, [S. l.], v. 34, n. 2, p. 49–56, 2000. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33770. Acesso em: 22 jan. 2025.

Chicago

Pietrus, Alain. 2000. „Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?“. Revista Colombiana De Matemáticas 34 (2):49-56. https://revistas.unal.edu.co/index.php/recolma/article/view/33770.

Harvard

Pietrus, A. (2000) „Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?“, Revista Colombiana de Matemáticas, 34(2), S. 49–56. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33770 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
A. Pietrus, „Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?“, rev.colomb.mat, Bd. 34, Nr. 2, S. 49–56, Juli 2000.

MLA

Pietrus, A. „Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?“. Revista Colombiana de Matemáticas, Bd. 34, Nr. 2, Juli 2000, S. 49-56, https://revistas.unal.edu.co/index.php/recolma/article/view/33770.

Turabian

Pietrus, Alain. „Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?“. Revista Colombiana de Matemáticas 34, no. 2 (Juli 1, 2000): 49–56. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33770.

Vancouver

1.
Pietrus A. Does Newton’s method for set-valued maps converges uniformly in mild differentiability context?. rev.colomb.mat [Internet]. 1. Juli 2000 [zitiert 22. Januar 2025];34(2):49-56. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/33770

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

176

Downloads

Keine Nutzungsdaten vorhanden.