Veröffentlicht
Uniform Dimension over Skew PBW Extensions
Dimensión uniforme de las extensiones PBW torcidas
DOI:
https://doi.org/10.15446/recolma.v48n1.45196Schlagworte:
Non-commutative rings, Filtered and graded rings, PBW extensions, Uniform dimension, Nonsingular modules (en)Anillos no conmutativos, anillos filtrados y graduados, extensiones PBW, dimensión uniforme, módulos no singulares (es)
Downloads
1Universidad Nacional de Colombia, Bogotá, Colombia. Email: mareyesv@unal.edu.co
The aim of the present paper is to show that, under some conditions, the uniform dimension of a ring R is the same as the uniform dimension of a skew Poincaré-Birkhoff-Witt extension built on R.
Key words: Non-commutative rings, Filtered and graded rings, PBW extensions, Uniform dimension, Nonsingular modules.
2000 Mathematics Subject Classification: 16P40, 16P60, 16W70, 13N10, 16S36.
El propósito de este artículo es mostrar que bajo ciertas condiciones, la dimensión uniforme de un anillo R coincide con la dimensión uniforme de una extensión Poincaré-Birkhoff-Witt torcida de R.
Palabras clave: Anillos no conmutativos, anillos filtrados y graduados, extensiones PBW, dimensión uniforme, módulos no singulares.
Texto completo disponible en PDF
References
[1] A. D. Bell and K. R. Goodearl, `Uniform Rank over Differential Operator Rings and Poincaré-Birkhoff-Witt extensions', Pacific Journal of Mathematics 131, 1 (1988), 13-37.
[2] C. Gallego and O. Lezama, `Gröbner Bases for Ideals of σ-PBW Extensions', Communications in Algebra 39, 1 (2011), 50-75.
[3] K. R. Goodearl, Nonsingular Rings and Modules, Pure and Applied Mathematics, New York, USA, 1976.
[4] K. R. Goodearl and T. Lenagan, `Krull Dimension of Differential Operator Rings III: Noncommutative Coeficients', Transactions of the American Mathematical Society 275, (1983), 833-859.
[5] P. Grzeszczuk, `Goldie Dimension of Differential Operator Rings', Communications in Algebra 16, 4 (1988), 689-701.
[6] T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, Graduate Texts in Mathematics 189, New York, USA, 1999.
[7] A. Leroy and J. Matczuk, `Goldie Conditions for Ore Extensions over Semiprime Rings', Algebras and Representation Theory 8, (2005), 679-688.
[8] O. Lezama and A. Reyes, `Some Homological Properties of Skew PBW Extensions', Communications in Algebra 42, (2014), 1200-1230.
[9] J. Matczuk, `Goldie Rank of Ore Extensions', Communications in Algebra 23, (1995), 1455-1471.
[10] J. McConnell and C. Robson, Non-commutative Noetherian Rings, with the Cooperation of L. W. Small., 2 edn, Graduate Studies in Mathematics. 30. American Mathematical Society (AMS), Providence, USA, 2001.
[11] V. A. Mushrub, `On the Goldie Dimension of Ore Extensions with Several Variables', Fundamentalnaya i Prikladnaya Matematika 7, (2001), 1107-1121.
[12] D. Quinn, `Embeddings of Differential Operator Rings and Goldie Dimension', Proceedings of the American Mathematical Society 102, 1 (1988), 9-16.
[13] A. Reyes, Ring and Module Theoretic Properties of σ-PBW Extensions, Ph.D. Thesis, Universidad Nacional de Colombia, 2013a.
[14] A. Reyes, `Gelfand-Kirillov Dimension of Skew PBW Extensions', Revista Colombiana de Matemáticas 47, 1 (2013b), 95-111.
[15] R. C. Shock, `Polynomial Rings over Finite-Dimensional Rings', Pacific Journal of Mathematics 42, (1972), 251-257.
[16] G. Sigurdsson, `Differential Operator Rings whose Prime Factors have Bounded Goldie Dimension', Archiv der Mathematik (Basel) 42, (1984), 348-353.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n1a05,
AUTHOR = {Reyes, Armando},
TITLE = {{Uniform Dimension over Skew \boldsymbol{PBW} Extensions}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {1},
pages = {79--96}
}
Literaturhinweise
A. D. Bell and K. R. Goodearl, `Uniform Rank over Differential Operator Rings and Poincaré-Birkhoff-Witt extensions', Pacific Journal of Mathematics 131, 1 (1988), 13-37.
C. Gallego and O. Lezama, `Gröbner Bases for Ideals of σ-PBW Extensions', Communications in Algebra 39, 1 (2011), 50-75.
K. R. Goodearl, Nonsingular Rings and Modules, Pure and Applied Mathematics, New York, USA, 1976.
K. R. Goodearl and T. Lenagan, `Krull Dimension of Differential Operator Rings III: Noncommutative Coeficients', Transactions of the American Mathematical Society 275, (1983), 833-859.
P. Grzeszczuk, `Goldie Dimension of Differential Operator Rings', Communications in Algebra 16, 4 (1988), 689-701.
T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, Graduate Texts in Mathematics 189, New York, USA, 1999.
A. Leroy and J. Matczuk, `Goldie Conditions for Ore Extensions over Semiprime Rings', Algebras and Representation Theory 8, (2005), 679-688.
O. Lezama and A. Reyes, `Some Homological Properties of Skew PBW Extensions', Communications in Algebra 42, (2014), 1200-1230.
J. Matczuk, `Goldie Rank of Ore Extensions', Communications in Algebra 23, (1995), 1455-1471.
J. McConnell and C. Robson, Non-commutative Noetherian Rings, with the Cooperation of L. W. Small., 2 edn, Graduate Studies in Mathematics. 30. American Mathematical Society (AMS), Providence, USA, 2001.
V. A. Mushrub, `On the Goldie Dimension of Ore Extensions with Several Variables', Fundamentalnaya i Prikladnaya Matematika 7, (2001), 1107-1121.
D. Quinn, `Embeddings of Differential Operator Rings and Goldie Dimension', Proceedings of the American Mathematical Society 102, 1 (1988), 9-16.
A. Reyes, Ring and Module Theoretic Properties of σ-PBW Extensions, Ph.D. Thesis, Universidad Nacional de Colombia, 2013a.
A. Reyes, `Gelfand-Kirillov Dimension of Skew PBW Extensions', Revista Colombiana de Matemáticas 47, 1 (2013b), 95-111.
R. C. Shock, `Polynomial Rings over Finite-Dimensional Rings', Pacific Journal of Mathematics 42, (1972), 251-257.
G. Sigurdsson, `Differential Operator Rings whose Prime Factors have Bounded Goldie Dimension', Archiv der Mathematik (Basel) 42, (1984), 348-353.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
CrossRef Cited-by
1. Armando Reyes, Héctor Suárez. (2017). $$\varvec{\sigma }$$ σ -PBW Extensions of Skew Armendariz Rings. Advances in Applied Clifford Algebras, 27(4), p.3197. https://doi.org/10.1007/s00006-017-0800-4.
2. Armando Reyes, Yésica Suárez. (2018). On the ACCP in skew Poincaré–Birkhoff–Witt extensions. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 59(4), p.625. https://doi.org/10.1007/s13366-018-0384-8.
3. Héctor Julio Suárez Suárez, Milton Armando Reyes Villamil. (2016). Some Remarks About the Cyclic Homology of Skew PBW Extensions / Algunas observaciones sobre la homología cíclica de extensiones PBW torcidas. Ciencia en Desarrollo, 7(2), p.99. https://doi.org/10.19053/01217488.v7.n2.2016.4219.
4. Héctor Suárez. (2017). Koszulity for graded skew PBW extensions. Communications in Algebra, 45(10), p.4569. https://doi.org/10.1080/00927872.2016.1272694.
5. Arturo Niño, María Camila Ramírez, Armando Reyes. (2020). Associated prime ideals over skew PBW extensions. Communications in Algebra, 48(12), p.5038. https://doi.org/10.1080/00927872.2020.1778012.
6. Sebastián Higuera, María Camila Ramírez, Armando Reyes. (2024). On the Uniform Dimension and the Associated Primes of Skew PBW Extensions. Bulletin of the Brazilian Mathematical Society, New Series, 55(4) https://doi.org/10.1007/s00574-024-00419-2.
Dimensions
PlumX
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2014 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.