Veröffentlicht
Principal spin-bundles and triality
DOI:
https://doi.org/10.15446/recolma.v49n2.60442Schlagworte:
triality, Spin-principal bundles, moduli space, fixed points, stability (en)Downloads
DOI: https://doi.org/10.15446/recolma.v49n2.60442
Principal spin-bundles and triality
Alvaro Antón Sancho1
1 University of Valladolid, Valladolid, Spain
e-mail: alvaro.anton@eumfrayluis.com
Abstract
In this paper we construct a family of spin Lie groups G with an outer automorphism of order three (triality automorphism) and we describe the subgroups of fixed points for this kind of automorphisms. We will take advantage of this work to study the action of the group of outer automorphisms of G on the moduli space of principal G-bundles and describe the subvariety of fixed points in M(G) for the action of the outer automorphism of order three of G. Finally, we further study the case of Spin(8, C).
Key words and phrases. triality, Spin-principal bundles, moduli space, fixed points, stability.
2010 Mathematics Subject Classification. 14D20.
Resumen
En este artículo construimos una familia de grupos de Lie espinoriales G dotados de un automorfismo externo de orden tres (trialidad) y describimos los subgrupos de puntos fijos para esta clase de automorfismos. Usaremos esto para estudiar la acción del grupo de automorfismos externos de G en el espacio de moduli de G-fibrados principales y describir la subvariedad de puntos fijos en M(G) para la acción del automorfismo externo de orden tres de G. Finalmente, profundizaremos en el estudio del caso Spin(8, C).
Palabras y frases clave. Trialidad, Spin-fibrado principal, espacio de moduli, puntos fijos, estabilidad.
Texto completo disponible en PDF
References
[1] A. Antón, Higgs bundles and triality, Ph.D. thesis, University Complutense of Madrid, 2009.
[2] R.L. Bryant, Some remarks on G2 structures, Proceedings of the Gökova Geometry-Topology Conference (2005), 75-109.
[3] A. Elduque, On triality and automorphisms and derivations of composition algebras, Linear Algebra and its Applications 314 (2000), 49-74.
[4] E. Fulton and J. Harris, Representation Theory. A first Course, GTM 129, Springer-Verlag, 1991.
[5] O. Garcia-Prada, Involutions of the moduli space of SL(n, C)-Higgs bundles and real forms, In Vector Bundles and Low Codimensional Subvarieties: State of the Art and Recent Developments Quaderni di Matematica, Editors: G. Casnati, F. Catanese and R. Notari, 2007.
[6] O. Garcia-Prada, P. Gothen, and I. Mundet, Representations of surface groups in the real symplectic group, Journal of Topology 6 (2013), no. 1, 64-118.
[7] S. Helgason, Differential Geometry, Lie Grous and Symmetric Spaces, GSM 34, AMS, 2001.
[8] N. Hitchin, Stable bundles and integrable systems, Duke Math. 54 (1987), 91-114.
[9] N. Jacobson, Exceptional lie algebras, Lecture Notes in Pure and Applied Mathematics (1), Marcel Dekker, Inc., 1971.
[10] M.-A. Knus, A.A. Merkurjev, M. Rost, and J.-P. Tignol, The Book of Involutions, American Mathematical Society Colloquium Publications 44 (1998).
[11] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry I, Tracts in Mathematics 15, Interscience Publishers, 1963.
[12] A. Kouvidakis and T. Pantev, The automorphism group of the moduli space of semistable vector bundles, Math. Ann. 302 (1995), 225-269.
[13] M. S. Narasimhan and C. S. Seshadri, Stable and Unitary Bundles on a Compact Riemann Surface, Ann. of Math. 82 (1965), 540-564.
[14] S. Ramanan, Orthogonal and Spin bundles over hyperelliptic curves, Proc. Indian Acad. Sci. (Math. Sci.) 90 (1981), 151-166.
[15] A. Ramanathan, Stable Principal Bundles on a Compact Riemann Surface, Math. Ann. 213 (1975), 129-152.
[16] ________, Moduli for principal bundles over algebraic curves: I, Proc. Indian Acad. Sci. (Math. Sci.) 106 (1976), 301-328.
[17] ________, Moduli for principal bundles over algebraic curves: II, Proc. Indian Acad. Sci. (Math. Sci.) 106 (1976), 421-449.
[18] R. D. Schafer, On the algebras formed by the Cayley-Dickson process, Amer. J. Math. 76 (1954), 435-446.
[19] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der mathematischen Wissenschaften 270, Springer-Verlag, 1985.
[20] J. A. Wolf and A. Gray, Homogeneous Spaces defined by Lie groups automorphisms I, J. Diff. Geom 2 (1968), 77-114.
(Recibido en mayo de 2015. Aceptado en diciembre de 2015)
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
CrossRef Cited-by
1. Álvaro Antón-Sancho. (2024). Fixed Points of Involutions of G-Higgs Bundle Moduli Spaces over a Compact Riemann Surface with Classical Complex Structure Group. Frontiers of Mathematics, 19(6), p.1025. https://doi.org/10.1007/s11464-023-0014-0.
2. Álvaro Antón-Sancho. (2022). F 4 and PSp (8, ℂ)-Higgs pairs understood as fixed points of the moduli space of E 6-Higgs bundles over a compact Riemann surface. Open Mathematics, 20(1), p.1723. https://doi.org/10.1515/math-2022-0543.
3. Álvaro Antón-Sancho. (2024). Fixed Points of Automorphisms of the Vector Bundle Moduli Space Over a Compact Riemann Surface. Mediterranean Journal of Mathematics, 21(1) https://doi.org/10.1007/s00009-023-02559-z.
4. Álvaro Antón-Sancho. (2023). Galois $$E_6$$-Bundles over a Hyperelliptic Algebraic Curve. Bulletin of the Iranian Mathematical Society, 49(4) https://doi.org/10.1007/s41980-023-00785-5.
5. Álvaro Antón-Sancho. (2023). Spin(8,C)-Higgs pairs over a compact Riemann surface. Open Mathematics, 21(1) https://doi.org/10.1515/math-2023-0153.
6. Álvaro Antón-Sancho. (2024). Fixed points of principal E 6 -bundles over a compact algebraic curve . Quaestiones Mathematicae, 47(3), p.501. https://doi.org/10.2989/16073606.2023.2229559.
Dimensions
PlumX
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2015 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.