Veröffentlicht

2016-01-01

On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces

DOI:

https://doi.org/10.15446/recolma.v50n1.62187

Schlagworte:

Cauchy problem, local and global well-posedness, Benjamin-Ono equation (en)

Autor/innen

  • Ricardo Pastrán Universidad Nacional de Colombia
  • Oscar Riaño Universidad Nacional de Colombia

We prove that the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation ut + uux + βHuxx + (Hux - uxx) = 0, where x ∈ T, t > 0, η > 0 and H denotes the usual Hilbert transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for any s > - ½. We also prove some ill-posedness issues when s < -1.

DOI: https://doi.org/10.15446/recolma.v50n1.62187

On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces

Sobre el buen planteamiento de la ecuación de Chen-Lee en espacios de Sobolev periódicos

Ricardo Pastrán1, Oscar Riaño1

1 Universidad Nacional de Colombia, Bogotá, Colombia. rapastranr@unal.edu.co, ogrianoc@unal.edu.co


Abstract

We prove that the initial value problem associated to a perturbation of the Benjamin-Ono equation or Chen-Lee equation ut + uux + β H uxx + η (H ux - uxx) = 0, where xT, t > 0, η > 0 and H denotes the usual Hilbert transform, is locally and globally well-posed in the Sobolev spaces Hs(T) for any s > -½. We also prove some ill-posedness issues when s < -1.

Keywords: Cauchy problem, local and global well-posedness, Benjamin-Ono equation.


2010 Mathematics Subject Classification: 34A12, 35Q35.

Resumen

Probamos que el problema de valor inicial asociado a una perturbación de la ecuación de Benjamín-Ono o ecuación de Chen-Lee ut + uux + β H uxx + η (H ux - uxx) = 0, donde xT, t > 0, η > 0 y H denota la transformada de Hilbert usual, es localmente y globalmente bien planteado en espacios de Sobolev Hs(T) para cualquier s > -½. También probamos un tipo de mal planteamiento cuando s < -1.

Palabras claves: Problema de Cauchy, buen planteamiento local y global, ecuación de Benjamín-Ono.


Texto completo disponible en PDF


References

[1] H. A. Biagioni, J. L. Bona, R. Iório, and M. Scialom, On the Korteweg-de Vries-Kuramoto-Sivashinsky equation, Adv. Diff. Eq. 1 (1996).

[2] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolutons equations. ii. the KdV equations, Geom. Funct. Anal. 3 (1993).

[3] H. H. Chen and Y. C. Lee, Nonlinear dynamical models of plasma turbulence, Phys. Scr. T2/1 (1982), no. 1, 41-47.

[4] H. H. Chen, Y. C. Lee, and S. Qian, A study of nonlinear dynamical models of plasma turbulence, Phys. Fluids B 11 (1989).

[5] _______, A turbulence model with stochastic soliton motion, J. Math. Phys. 31 (1990).

[6] D. B. Dix, Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation, J. Diff. Eq. 97 (1991).

[7] _______, Nonuniqueness and uniqueness in the initial value problem for Burgers' equation, SIAM J. Math. Anal. 1 (1996), no. 1, 1-17.

[8] O. Duque, Sobre una versión bidimensional de la ecuación Benjamin-Ono generalizada, PhD Thesis, Universidad Nacional de Colombia, 2014.

[9] S. A. Esfahani, High dimensional nonlinear dispersive models, PhD Thesis, IMPA, 2008.

[10] B. F. Feng and T. Kawahara, Temporal evolutions and stationary waves for dissipative Benjamin-Ono equation, Phys. D 139 (2000).

[11] C. E. Kenig, G. Ponce, and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc. 9 (1996), no. 2, 573-603.

[12] L. Molinet, J. C. Saut, and N. Tzvetkov, ll-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal. 33 (2001), no. 4, 982-988.

[13] R. Pastrán, On a perturbation of the Benjamin-Ono equation, Nonlinear Anal. 93 (2013).

[14] D. Pilod, Sharp well-posedness results for the Kuramoto-Velarde equation, Commun. Pure Appl. Anal. 7 (2008), no. 4, 867-881.

(Recibido: julio de 2015 Aceptado: enero de 2016)

Zitationsvorschlag

APA

Pastrán, R. und Riaño, O. (2016). On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces. Revista Colombiana de Matemáticas, 50(1), 55–73. https://doi.org/10.15446/recolma.v50n1.62187

ACM

[1]
Pastrán, R. und Riaño, O. 2016. On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces. Revista Colombiana de Matemáticas. 50, 1 (Jan. 2016), 55–73. DOI:https://doi.org/10.15446/recolma.v50n1.62187.

ACS

(1)
Pastrán, R.; Riaño, O. On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces. rev.colomb.mat 2016, 50, 55-73.

ABNT

PASTRÁN, R.; RIAÑO, O. On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces. Revista Colombiana de Matemáticas, [S. l.], v. 50, n. 1, p. 55–73, 2016. DOI: 10.15446/recolma.v50n1.62187. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/62187. Acesso em: 22 jan. 2025.

Chicago

Pastrán, Ricardo, und Oscar Riaño. 2016. „On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces“. Revista Colombiana De Matemáticas 50 (1):55-73. https://doi.org/10.15446/recolma.v50n1.62187.

Harvard

Pastrán, R. und Riaño, O. (2016) „On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces“, Revista Colombiana de Matemáticas, 50(1), S. 55–73. doi: 10.15446/recolma.v50n1.62187.

IEEE

[1]
R. Pastrán und O. Riaño, „On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces“, rev.colomb.mat, Bd. 50, Nr. 1, S. 55–73, Jan. 2016.

MLA

Pastrán, R., und O. Riaño. „On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces“. Revista Colombiana de Matemáticas, Bd. 50, Nr. 1, Januar 2016, S. 55-73, doi:10.15446/recolma.v50n1.62187.

Turabian

Pastrán, Ricardo, und Oscar Riaño. „On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces“. Revista Colombiana de Matemáticas 50, no. 1 (Januar 1, 2016): 55–73. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/62187.

Vancouver

1.
Pastrán R, Riaño O. On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces. rev.colomb.mat [Internet]. 1. Januar 2016 [zitiert 22. Januar 2025];50(1):55-73. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/62187

Bibliografische Angaben herunterladen

CrossRef Cited-by

CrossRef citations1

1. Ricardo Pastrán, Oscar Riaño. (2024). Well-posedness results for a family of dispersive–dissipative Benjamin–Ono equations. Applicable Analysis, , p.1. https://doi.org/10.1080/00036811.2024.2442510.

Dimensions

PlumX

Aufrufe der Abstractseiten von Artikeln

232

Downloads

Keine Nutzungsdaten vorhanden.