Veröffentlicht
The total component of the partial Schur multiplier of the elementary abelian 3-group
DOI:
https://doi.org/10.15446/recolma.v50n1.62199Schlagworte:
partial factor set, total component, partial coboundary (en)Downloads
In this work we determine the total component of the partial Schur
multiplier of elementary abelian 3-groups.
DOI: https://doi.org/10.15446/recolma.v50n1.62199
The total component of the partial Schur multiplier of the elementary abelian 3-group
La componente total del multiplicador parcial de Schur del 3-grupo abeliano elemental
Hector Pinedo1
1 Universidad Industrial de Santander, Bucaramanga, Colombia. hpinedot@uis.edu.co
Abstract
In this work we determine the total component of the partial Schur multiplier of elementary abelian 3-groups.
Keywords: partial factor set, total component, partial coboundary.
2010 Mathematics Subject Classification: 20C25, 20M30, 20M50.
Resumen
En este trabajo determinamos la componente total del multiplicador parcial de Schur para los 3-grupos abelianos elementales.
Palabras claves: conjunto factor parcial, componente total, cobordo parcial.
Texto completo disponible en PDF
References
[1] H. G. G de Lima and H. Pinedo, On the total component of the partial schur multipier, J. Aust. Math. Soc. 100 (2016), no. 3, 374-402.
[2] M. Dokuchaev, H. G. G. de Lima, and H. Pinedo, Partial representations and their domains, preprint.
[3] M. Dokuchaev, R. Exel, and P. Piccione, Partial representations and partial group algebras, J. Algebra 226 (2000), 502-532.
[4] M. Dokuchaev and N. Khrypchenko, Partial cohomology of groups, J. Algebra 427 (2015), 251-268.
[5] M. Dokuchaev and C. Polcino Milies, Isomorphisms of partial group rings, Glasg. Math 409 (2009), 89-105.
[6] M. Dokuchaev and B. Novikov, Partial projective representations and partial actions, J. Pure Appl. Algebra 214 (2010), 251-268.
[7] ______, Partial projective representations and partial actions ii, J. Pure Appl. Algebra 214 (2012), 438-455.
[8] M. Dokuchaev, B. Novikov, and H. Pinedo, The partial Schur multiplier of a group, J. Algebra 392 (2013), 199-225.
[9] M. Dokuchaev and J. J. Simon, Invariants of partial group algebras of finite p-groups, Contemp. Math 427 (2009), 1-17.
[10] ______, Isomorphisms of partial group rings, Comm. Algebra 44 (2016), 680-696.
[11] M. Dokuchaev and N. Zhukavets, On finite degree partial representations of groups, J. Algebra 274 (2004), 309-334.
[12] B. Novikov and H. Pinedo, On components of the partial schur multiplier, Comm. Algebra 42 (2014), 2484-2495.
[13] H. Pinedo, On elementary domains of partial projective representations of groups, Algebra Discrete Math. 15 (2013), no. 1, 63-82.
[14] ______, A calculation of the partial Schur multiplier of S3, Int. Journal of Math., Game Theory and Algebra 22 (2014), no. 4, 405-417.
[15] ______, On the torsion part and the total component of the partial Schur multiplier, Comm. Algebra. To appear (2016).
(Recibido: octubre de 2015 Aceptado: abril de 2016)
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
CrossRef Cited-by
1. M. Dokuchaev. (2019). Recent developments around partial actions. São Paulo Journal of Mathematical Sciences, 13(1), p.195. https://doi.org/10.1007/s40863-018-0087-y.
2. Mikhailo Dokuchaev, Nicola Sambonet. (2019). Schur’s theory for partial projective representations. Israel Journal of Mathematics, 232(1), p.373. https://doi.org/10.1007/s11856-019-1876-4.
Dimensions
PlumX
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2016 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.