Veröffentlicht
New Hermite-Hadamard and Jensen Type Inequalities for h-Convex Functions on Fractal Sets
DOI:
https://doi.org/10.15446/recolma.v50n2.62207Schlagworte:
generalized convexity, h-convex functions, Fractal sets, Hermite-Hadamard type inequality, Jensen inequality (en)Downloads
In this paper, some new Jensen and Hermite-Hadamard inequalities for h-convex functions on fractal sets are obtained. Results proved in this paper may stimulate further research in this area.
DOI: https://doi.org/10.15446/recolma.v50n2.62207
New Hermite-Hadamard and Jensen Type Inequalities for h-Convex Functions on Fractal Sets
Nuevas desigualdades del tipo Hermite-Hadamard y Jensen para funciones h-convexas sobre conjuntos fractales
Miguel Vivas1, Jorge Hernández2, Nelson Merentes3
1 Escuela Superior politécnica del Litoral (ESPOL), Guayaquil, Ecuador, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela mvivas@ucla.edu.ve, mjvivas@espol.edu.ec
2 Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela. jorgehernandez@ucla.edu.ve
3 Universidad Central de Venezuela, Caracas, Venezuela. nmerucv@gmail.com
Abstract
In this paper, some new Jensen and Hermite-Hadamard inequalities for h-convex functions on fractal sets are obtained. Results proved in this paper may stimulate further research in this area.
Keywords: generalized convexity, h-convex functions, Fractal sets, Hermite-Hadamard type inequality, Jensen inequality.
Mathematics Subject Classification: 53C21, 53C42.
Resumen
En este artículo, se obtienen algunas nuevas desigualdades del tipo Jensen y Hermite-Hadamard para funciones h-convexas sobre conjuntos fractales. Los resultados probados en este artículo pueden estimular futuras investigaciones en esta área.
Palabras claves: convexidad generalizada, funciones h-convexas, conjuntos fractales, desigualdad del tipo Hermite Hadamard, Desigualdad del tipo Jensen.
Texto completo disponible en PDF
References
[1] M. Klaričić Bakula and J. Pečarić, Note of some hadamard type inequality, Journal of Inequalities in Pure and Applied Mathematics 5 (2004), 119-124.
[2] M. Bombardelli and S. Varošanec, Properties of h-convex functions related to the hermite-hadamard-fejér inequalities, Computers and Mathematics with Applications 58 (2009), 1869-1877.
[3] W. W. Breckner, Stetigkeitsaussagen für eineklasse verallgemeinerter konvexer funktionen in topologischen linearen räumen, Pub. Inst. Math. 23 (1978), 13-20.
[4] S. S. Dragomir, Inequalities of hermite-hadamard type for h-convex functions on linear spaces, Proyecciones Journal of Mathematics 32 (2015), 323-341.
[5] S. S. Dragomir and S. Fitzpatrick, The hadamard.s inequality for s-convex functions in the second sense, Demonstratio Math. 32 (1999), 687-696.
[6] G. A. Edgar, Measure, topology, and fractal geometry, Springer-Verlag, New York, 1990.
[7] K. Falconer, The geometry of fractal sets, Cambridge University Press,Cambridge, 1985.
[8] K. Falconer, Fractal geometry, John Wiley and Sons, Chichester, 1990.
[9] E. Gounova and V. Levin, Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. (russian) numerical mathematics and mathematical physics (russian), Numerical mathematics and mathematical physics (Russian). Moskov. Gos. Ped. Inst., Moscow 166 (1985), 138-142.
[10] E. Gounova and V. Levin, Neravenstva dlja funkcii širokogo klassa, soderaščego vypuklye, monotonnye, i nekotorye drugie vidy funkcii, in : Vyčislitel, Mat. i. Mat. Fiz. Mevuzov. Sb. Nauč. Trudov. MGPI. Moskva 32 (1985), 138-142.
[11] J. L. W Jensen, Sur les fonctions convexes et le inequalitiés entre les valeurs moyennes, Acta Math. 32 (1906), 175-193.
[12] Eder Kikianty, Hermite-hadamard inequality in the geometry of banach spaces, Tesis doctoral, School of Engineering and Science Faculty of Health, Engineering and Science Victoria University, 2010, The purpose of this thesis is to employ the Hermite-Hadamard inequality in studying the geometry of Banach spaces.
[13] A. Kiliçman and W. Saleh, Notions of generalized s-convex functions on fractal sets, Journal of Inequalities and Applications. Spingeropen Journal 312 (2015).
[14] A. Kiliçman and W. Saleh, Some generalizaed hermite-hadamard type integral inequalities for generalized s-convex functions on fractal sets, Advances in Differences Equations. Spingeropen Journal 301 (2015).
[15] U. S. Kirmaci, M. K. Bakula, M. F. Özdemir, and J. Pečarić, Hadamard type inequalities for s-convex functions, Appl. Math. and Comp 193 (2007), 26-35.
[16] M. A Latif, On some inequalities for h-convex functions, Int. Journal of Math. Analysis 4 (2010), no. 30, 1473-1482.
[17] B. B. Mandelbrot, The fractal geometry of nature, Macmillan, New York, Ny, USA, 1983.
[18] N. Merentes and S. Rivas, El desarrollo del concepto de función convexa, XXVI Escuela venezolana de Matemáticas. Emalca - Venezuela, 2013.
[19] D. S. Mitrinović and I. B. Lačković, Hermite and convexity, Aequationes Math. 28 (1985), 225-232.
[20] D. S. Mitrinović and J. Pečarić, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht /Boston /London, 1993.
[21] H. Mo and X. Sui, Generalized s-convex functions on fractal sets, ArXiv:1405.0652.2v 28 (2014), 225-232.
[22] H. Mo, X. Sui, and D. Yu, Generalized convex functions on fractal sets and two related inequalities, Abstract and Applied Analisys 28 (2014), 225-232.
[23] M. Noor, Hermite-hadamard integral inequalities fot log φ-convex functions, Nonlinear Anaisys Forum 13 (2008), no. 2, 119-124.
[24] B. G. Pachpatte, On some inequalities for convex functions, RGMIA. Res.Rep.Coll.6 Coll. 6 (2003), 119-124.
[25] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Inc., 1992.
[26] A. W. Roberts and D. Valberg, Convex functions, Pure and Applied Mathematics. Academic Press, 1973.
[27] S. Simić, On a new converse of jensen's inequality, Publications de L'Intitut Mathématique. Nouvelle serie 85 (2009), no. 99, 107-110.
[28] S. Varošanec, On h-convexity, J. Math. Anal. Appl. 326 (2007), 303-311.
[29] L. Wang, X. Ma, and L. Liu, A note on some new refinements of jensen's inequality for convex functions, Journal of Inequalities in Pure and Applied Mathematics 10 (2009), no. 2, 6 pp.
[30] X. J. Yang, Advanced local fractional calculus an aplications, World Science, NY, USA, 2012.
Recibido: marzo de 2016 Aceptado: septiembre de 2016
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
CrossRef Cited-by
1. TINGSONG DU, HAO WANG, MUHAMMAD ADIL KHAN, YAO ZHANG. (2019). CERTAIN INTEGRAL INEQUALITIES CONSIDERING GENERALIZED m-CONVEXITY ON FRACTAL SETS AND THEIR APPLICATIONS. Fractals, 27(07), p.1950117. https://doi.org/10.1142/S0218348X19501172.
2. Xiao-Jun Yang, Feng Gao, J. A. Tenreiro Machado, Dumitru Baleanu. (2019). Mathematical Methods in Engineering. Nonlinear Systems and Complexity. 24, p.175. https://doi.org/10.1007/978-3-319-90972-1_12.
3. Wedad Saleh, Adem Kılıçman. (2023). Some Local Fractional Inequalities Involving Fractal Sets via Generalized Exponential (s,m)-Convexity. Axioms, 12(2), p.106. https://doi.org/10.3390/axioms12020106.
4. LEI XU, SHUHONG YU, TINGSONG DU. (2022). PROPERTIES AND INTEGRAL INEQUALITIES ARISING FROM THE GENERALIZED n-POLYNOMIAL CONVEXITY IN THE FRAME OF FRACTAL SPACE. Fractals, 30(04) https://doi.org/10.1142/S0218348X22500840.
5. Arslan Razzaq, Tahir Rasheed, Shahid Shaokat. (2023). Generalized Hermite–Hadamard type inequalities for generalized F-convex function via local fractional integrals. Chaos, Solitons & Fractals, 168, p.113172. https://doi.org/10.1016/j.chaos.2023.113172.
6. Wenbing Sun. (2020). Some Hermite–Hadamard type inequalities for generalized h-preinvex function via local fractional integrals and their applications. Advances in Difference Equations, 2020(1) https://doi.org/10.1186/s13662-020-02812-9.
7. Ohud Almutairi, Adem Kiliçman. (2021). Generalized Fejér–Hermite–Hadamard type via generalized (h−m)-convexity on fractal sets and applications. Chaos, Solitons & Fractals, 147, p.110938. https://doi.org/10.1016/j.chaos.2021.110938.
8. Peng Xu, Saad Ihsan Butt, Saba Yousaf, Adnan Aslam, Tariq Javed Zia. (2022). Generalized Fractal Jensen–Mercer and Hermite–Mercer type inequalities via h-convex functions involving Mittag–Leffler kernel. Alexandria Engineering Journal, 61(6), p.4837. https://doi.org/10.1016/j.aej.2021.10.033.
9. Sa'ud Al‐Sa'di, Maria Bibi, Muhammad Muddassar. (2023). Some Hermite‐Hadamard's type local fractional integral inequalities for generalized γ‐preinvex function with applications. Mathematical Methods in the Applied Sciences, 46(2), p.2941. https://doi.org/10.1002/mma.8680.
10. SHUHONG YU, PSHTIWAN OTHMAN MOHAMMED, LEI XU, TINGSONG DU. (2022). AN IMPROVEMENT OF THE POWER-MEAN INTEGRAL INEQUALITY IN THE FRAME OF FRACTAL SPACE AND CERTAIN RELATED MIDPOINT-TYPE INTEGRAL INEQUALITIES. Fractals, 30(04) https://doi.org/10.1142/S0218348X22500852.
11. WENBING SUN. (2021). LOCAL FRACTIONAL OSTROWSKI-TYPE INEQUALITIES INVOLVING GENERALIZED h-CONVEX FUNCTIONS AND SOME APPLICATIONS FOR GENERALIZED MOMENTS. Fractals, 29(01), p.2150006. https://doi.org/10.1142/S0218348X21500067.
12. CHUNYAN LUO, YUPING YU, TINGSONG DU. (2021). AN IMPROVEMENT OF HÖLDER INTEGRAL INEQUALITY ON FRACTAL SETS AND SOME RELATED SIMPSON-LIKE INEQUALITIES. Fractals, 29(05), p.2150126. https://doi.org/10.1142/S0218348X21501267.
13. Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, Yu-Ming Chu. (2020). Some new local fractional inequalities associated with generalized $(s,m)$-convex functions and applications. Advances in Difference Equations, 2020(1) https://doi.org/10.1186/s13662-020-02865-w.
14. Miguel Vivas-Cortez, Maria Bibi, Muhammad Muddassar, Sa’ud Al-Sa’di. (2023). On local fractional integral inequalities via generalized ( h ˜ 1 , h ˜ 2 ) \left({\tilde{h}}_{1},{\tilde{h}}_{2}) -preinvexity involving local fractional integral operators with Mittag-Leffler kernel. Demonstratio Mathematica, 56(1) https://doi.org/10.1515/dema-2022-0216.
15. Miguel Vivas-Cortez, Artion Kashuri, Jorge E. Hernández Hernández. (2020). Trapezium-Type Inequalities for Raina’s Fractional Integrals Operator Using Generalized Convex Functions. Symmetry, 12(6), p.1034. https://doi.org/10.3390/sym12061034.
16. Ohud Almutairi, Adem Kılıçman. (2022). A Review of Hermite–Hadamard Inequality for α-Type Real-Valued Convex Functions. Symmetry, 14(5), p.840. https://doi.org/10.3390/sym14050840.
17. Chunyan Luo, Hao Wang, Tingsong Du. (2020). Fejér–Hermite–Hadamard type inequalities involving generalized h-convexity on fractal sets and their applications. Chaos, Solitons & Fractals, 131, p.109547. https://doi.org/10.1016/j.chaos.2019.109547.
18. Arslan Razzaq, Iram Javed , Juan E. Nápoles V. , Francisco Martínez González . (2024). Hermite-Hadamard inequalities for generalized (m-F)-convex function in the framework of local fractional integrals. Annals of the University of Craiova Mathematics and Computer Science Series, 51(1), p.198. https://doi.org/10.52846/ami.v51i1.1775.
19. Asfand Fahad, Zammad Ali, Shigeru Furuichi, Saad Ihsan Butt, Ayesha Ayesha, Yuanheng Wang. (2024). New Inequalities for GA–h Convex Functions via Generalized Fractional Integral Operators with Applications to Entropy and Mean Inequalities. Fractal and Fractional, 8(12), p.728. https://doi.org/10.3390/fractalfract8120728.
20. Xiao-Jun Yang, Feng Gao, H.M. Srivastava. (2018). A new computational approach for solving nonlinear local fractional PDEs. Journal of Computational and Applied Mathematics, 339, p.285. https://doi.org/10.1016/j.cam.2017.10.007.
21. Ayşe Dost, İrem Nur Özdemir. (2024). Women’s Health Literacy Levels and Health Beliefs Concerning Cervical Cancer and Pap Smear Test in Türkiye. Bakirkoy Tip Dergisi / Medical Journal of Bakirkoy, , p.159. https://doi.org/10.4274/BMJ.galenos.2024.2023.6-3.
22. Yu-Ming Chu, Saima Rashid, Thabet Abdeljawad, Aasma Khalid, Humaira Kalsoom. (2021). On new generalized unified bounds via generalized exponentially harmonically s-convex functions on fractal sets. Advances in Difference Equations, 2021(1) https://doi.org/10.1186/s13662-021-03380-2.
23. YONG-MIN LI, SAIMA RASHID, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU. (2021). NEW NEWTON’S TYPE ESTIMATES PERTAINING TO LOCAL FRACTIONAL INTEGRAL VIA GENERALIZED p-CONVEXITY WITH APPLICATIONS. Fractals, 29(05), p.2140018. https://doi.org/10.1142/S0218348X21400181.
24. Miguel Vivas-Cortez, Artion Kashuri, Rozana Liko, Jorge Eliecer Hernández Hernández. (2020). Trapezium-Type Inequalities for an Extension of Riemann–Liouville Fractional Integrals Using Raina’s Special Function and Generalized Coordinate Convex Functions. Axioms, 9(4), p.117. https://doi.org/10.3390/axioms9040117.
25. Wenbing Sun. (2021). Some new inequalities for generalized h‐convex functions involving local fractional integral operators with Mittag‐Leffler kernel. Mathematical Methods in the Applied Sciences, 44(6), p.4985. https://doi.org/10.1002/mma.7081.
26. MAYSAA AL QURASHI, SAIMA RASHID, AASMA KHALID, YELIZ KARACA, YU-MING CHU. (2021). NEW COMPUTATIONS OF OSTROWSKI-TYPE INEQUALITY PERTAINING TO FRACTAL STYLE WITH APPLICATIONS. Fractals, 29(05), p.2140026. https://doi.org/10.1142/S0218348X21400260.
Dimensions
PlumX
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2016 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.