Veröffentlicht
A weak version of Barberà-Kelly's Theorem
Una versión débil del teorema de Barberà-Kelly
DOI:
https://doi.org/10.15446/recolma.v51n2.70900Schlagworte:
Preferences, Manipulation, Social Choice, Merging (en)Preferencias, Manipulación, Elección Social, Fusión (es)
Downloads
Literaturhinweise
C. E. Alchourrón, P. Gärdenfors, and D. Makinson, On the logic of theory
change: Partial meet contraction and revision functions, J. Symb. Log. 50
(1985), no. 2, 510-530.
K. J. Arrow, Social Choice and Individual Values, Cowles Commission
Monograph No. 12, John Wiley & Sons, Inc., New York, N. Y.; Chapman
& Hall, Ltd., London, 1951.
S. Barberà, Manipulation of social decision functions, J. Econom. Theory
(1977), no. 2, 266-278.
S. Barberà, Strategy-proof social choice, Handbook of Social Choice and Welfare (A. K. Sen K. J. Arrow and K. Suzumura, eds.), vol. 2, Elsevier, 2010,
pp. 731-832.
S. Barberà, W. Bossert, and P. K. Pattanaik, Ranking sets of objects,
Handbook of Utility Theory (C. Seidl S. Barber~A , P.J. Hammond, ed.),
vol. 2, Kluwer Publisher, 2004, pp. 893-978.
S. Barberà, B. Dutta, and A. Sen, Strategy-proof social choice correspondences, J. Econom. Theory 101 (2001), no. 2, 374-394.
J.-P. Benoît, Strategic manipulation in voting games when lotteries and
ties are permitted, J. Econom. Theory 102 (2002), no. 2, 421-436.
W. Bossert, P. K. Pattanaik, and Y. Xu, Ranking opportunity sets: an
axiomatic approach, J. Econom. Theory 63 (1994), no. 2, 326-345.
S. Brams and P. C. Fishburn, Voting procedures, Handbook of Social
Choice and Welfare (K. J. Arrow, A. K. Sen, and K. Suzumura, eds.),
vol. 1, 2002, pp. 173-236.
F. Brandt, Group-strategyproof irresolute social choice functions, IJCAI
, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011 (T.Walsh, ed.),
IJCAI/AAAI, 2011, pp. 79-84.
F. Brandt and M. Brill, Necessary and sufficient conditions for the strategyproofness of irresolute social choice functions, Proceedings of the 13th Conference on Theoretical Aspects of Rationality and Knowledge (TARK-2011), Groningen, The Netherlands, July 12-14, 2011 (R. A. Krzysztof, ed.), ACM, 2011, pp. 136-142.
S. Chopra, A. K. Ghose, and T. A. Meyer, Social choice theory, belief
merging, and strategy-proofness, Information Fusion 7 (2006), no. 1, 61-79.
S. Coste-Marquis, J. Lang, P. Liberatore, and P. Marquis, Expressive power and succinctness of propositional languages for preference representation, Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR2004), Whistler, Canada, June 2-5, 2004 (D. Dubois, C. A. Welty, and M.-A. Williams, eds.), AAAI Press, 2004, pp. 203-212.
B. de Finetti, La prévision: ses lois logiques, ses sources subjectives, Annales de l'Institut Henri Poincaré 7 (1937), 1-68.
K. Downing and M. van Hees, In praise of manipulation, British Journal
of Political Science 38 (2008), 1-15.
D. Dubois and H. Fargier, A unified framework for order-of-magnitude
confidence relations, Proceedings of the 20th conference on Uncertainty in
artificial intelligence (Arlington, Virginia, United States), UAI '04, AUAI
Press, 2004, pp. 138-145.
D. Dubois, H. Fargier, and P. Perny, Qualitative decision theory with preference relations and comparative uncertainty: An axiomatic approach, Artif. Intell. 148 (2003), no. 1-2, 219-260.
D. Dubois, H. Fargier, H. Prade, and P. Perny, Qualitative decision theory: from savage's axioms to nonmonotonic reasoning, J. ACM 49 (2002), no. 4, 455-495.
D. Dubois, J. Lang, and H. Prade, Possibilistic logic, Handbook of logic
in artificial intelligence and logic programming, Vol. 3 (Dov M. Gabbay,
C. H. Hogger, and J. A. Robinson, eds.), Oxford Univ. Press, New York,
, pp. 439-513.
D. Dubois and H. Prade, Possibilistic logic: a retrospective and prospective view, Fuzzy Sets and Systems 144 (2004), no. 1, 3-23.
J. Duggan and T. Schwartz, Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized, Soc. Choice Welf. 17 (2000), no. 1, 85-93.
H. Egli, A mathematical model for nondeterministic computations, Tech. report, ETH, 1975.
P. Everaere, S. Konieczny, and P. Marquis, The strategy-proofness land-scape of merging, J. Artif. Intell. Res. 28 (2007), 49-105.
P. C. Fishburn, Even-chance lotteries in social choice theory, Theory and Decision 3 (1972), no. 1, 18-40.
D. M. Gabbay, O. Rodrigues, and G. Pigozzi, Connections between belief revision, belief merging and social choice, J. Log. Comput. 19 (2009), no. 3, 445-446.
P. Gärdenfors, Manipulation of social choice functions, Journal of Economic Theory 13 (1976), no. 2, 217-228.
C. Geist and U. Endriss, Automated search for impossibility theorems in social choice theory: Ranking sets of objects, Journal of Artificial Intelligence Research 40 (2011), 143-174.
A. Gibbard, Manipulation of voting schemes: a general result, Econometrica 41 (1973), 587-601.
D. Grossi, Correspondences in the theory of aggregation, Logic and the
Foundations of Game and Decision Theory - LOFT 8, Revised and selected
papers (W. van der Hoek G. Bonanno, B. Loewe, ed.), vol. 1, 2010, pp. 34-60.
J. Y. Halpern, Defining relative likelihood in partially-ordered preferential structures, Journal of Artificial Intelligence Research 7 (1997), 1-24.
J. S. Kelly, Strategy-proofness and social choice functions without single-valuedness, Econometrica 45 (1977), no. 2, 439-446.
J. S. Kelly, Social Choice theory: An introduction, Springer-Verlag, Berlin, 1988.
J. G. Kemeny, Mathematics without numbers, Daedalus 18 (1959), 577-591.
S. Konieczny and R. Pino Pérez, Merging information under constraints: A logical framework, J. Log. Comput. 12 (2002), no. 5, 773-808.
S. Konieczny and R. Pino Pérez, Propositional belief base merging or how to merge beliefs/goals coming from several sources and some links with social choice theory, European Journal of Operational Research 160 (2005), no. 3, 785-802.
S. Konieczny and R. Pino Pérez, Logic based merging, J. Philosophical Logic 40 (2011), no. 2, 239-270.
J. F. Leal, Manipulabilidad en la teoría de elección social, Master's thesis, Departamento de Matemáticas, Universidad de Los Andes, Mérida,
Venezuela, 2005.
D. Makinson, Combinatorial versus decision-theoretic components of impossibility theorems, Theory and Decision 40 (1996), no. 2, 181-189.
R. Milner, Processes: a mathematical model of computing agents, Logic
Colloquium '73 (Bristol, 1973), Studies in Logic and the Foundations of
Mathematics, Vol. 80, North-Holland, Amsterdam, 1975, pp. 157-173.
R. Pino Perez and F. Leal, A notion of manipulability based on lifting preferences, Tech. report, No 252. Departamento de Matemáticas, Universidad de Los Andes, 2007.
M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh, Aggregating partially
ordered preferences, J. Log. Comput. 19 (2009), no. 3, 475-502.
P. J. Reny, Arrow's theorem and the Gibbard-Satterthwaite theorem: a unified approach, Econom. Lett. 70 (2001), no. 1, 99-105.
M. A. Satterthwaite, Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions, J. Econom. Theory 10 (1975), no. 2, 187-217.
G. L. S. Shackle, On the meaning and measure of uncertainty, Metroeconomica 5 (1953), 97-115.
G. L. S. Shackle, Uncertainty in economics and other reflections, Cambridge University Press, Cambridge, UK, 1995.
A. D. Taylor, Social choice and the mathematics of manipulation, Cambridge University Press, Cambridge, UK, 2005.
J. van Benthem, P. Girard, and O. Roy, Everything else being equal: A
modal logic for ceteris paribus preferences, Journal of Philosophical Logic
(2009), 83-125.
P. Vincke, Arrow's theorem is not a surprising result, European J. Oper.
Res. 10 (1982), no. 1, 22-25.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
CrossRef Cited-by
1. Amílcar Mata Díaz, Ramón Pino Pérez. (2023). On manipulation in merging epistemic states. International Journal of Approximate Reasoning, 155, p.66. https://doi.org/10.1016/j.ijar.2023.01.005.
2. Amílcar Mata Díaz, Ramón Pino Pérez. (2021). Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Lecture Notes in Computer Science. 12897, p.457. https://doi.org/10.1007/978-3-030-86772-0_33.
3. Amílcar Mata Díaz, Ramón Pino Pérez, Jahn Franklin Leal. (2023). Taxonomy of powerful voters and manipulation in the framework of social choice functions. Social Choice and Welfare, 61(2), p.277. https://doi.org/10.1007/s00355-022-01448-w.
Dimensions
PlumX
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2017 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.