Veröffentlicht
A short survey on observability
DOI:
https://doi.org/10.15446/recolma.v53nsupl.84013Schlagworte:
observability, invariants, actions (en)observabilidad, invariantes, acciones (es)
Downloads
Literaturhinweise
N. Andruskiewitsch and W. Ferrer Santos, On observable module categories, in Groups, Rings and Group Rings, eds. A. Gianbruno, C. Polcino Milies, K.S. Sehgal. Lecture Notes in Pure and Appl. Math. No 248, Chapman & Hall/CRC, Boca Raton (2006), 11-23.
A. Bialynicki-Birula, G. Hochschild, and D. Mostow, Extension of representations of algebraic linear groups, Amer. J. Math. 85 (1963), 131-144.
A. Borel, Linear algebraic groups, Graduate Texts in Mathematics, Vol 126, 2d. enlarged ed., Springer-Verlag, New York, 1991.
C. Chevalley, Théorie des groupes de Lie. Tome II. Groupes algébriques, Actualités Sci. Ind. no. 1152, Hermann & Cie., Paris, 1951.
W.-L. Chow, On the projective embedding of homogeneous varieties, in: Algebraic geometry and topology. A symposium in honor of S.Lefschetz, pp 122-128, Princeton University Press, Princeton, N. J., 1957.
E. Cline, B. Parshall, and L. Scott, Induced modules and afine quotients, Math. Ann. 230 (1977), no. 1, 1-14.
Y. Doi, On the structure of relative Hopf modules, Comm. Algebra 11 (1983), no. 3, 243-253.
Y. Doi, Algebras with total integrals, Comm. Algebra 13 (1985), no. 10, 2137-2159.
Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), no. 5, 801-818.
F. D. Grosshans, Observable groups and Hilbert's fourteenth problem, Amer. J. Math. 95 (1973), 229-253.
F. D. Grosshans, Localization and invariant theory, Adv. in Math. 21 (1976), no. 1, 50-60.
F. D. Grosshans, Algebraic homogeneous spaces and invariant theory, Lecture Notes in Mathematics, Vol. 1673, Springer-Verlag, Berlin, 1997.
W. J. Haboush, Reductive groups are geometrically reductive, Ann. of Math. 102 (1975), no. 2, 67-83.
W. J. Haboush, Homogeneous vector bundles and reductive subgroups of reductive algebraic groups, Amer. J. Math. 100 (1978), 1123-1137.
D. Hilbert, Problèmes futures de mathématiques, Comptes Rendus du 2ème Congrès International des Mathématiciens, Gauthier-Villars, Paris (1902), 58-111.
G. Hochschild, Cohomology of algebraic linear groups, Illinois J. Math. 5 (1961), 492-519.
G. Hochschild, Rationally injective modules for algebraic linear groups, Proc. Amer. Math. Soc. 14 (1963), 880-883.
G. Hochschild, The structure of lie groups, Holden-Day, San Francisco, 1965.
G. Hochschild, Basic theory of algebraic groups and Lie algebras, Graduate Texts in Mathematics, Vol 75, Springer-Verlag, New York, 1981.
G. Hochschild and G. D. Mostow, Extension of representations of Lie groups and Lie algebras, I., Amer. J. of Math. 79 (1957), 924-942.
G. Hochschild and G. D. Mostow, Unipotent groups in invariant theory, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 646-648.
J. Humphreys, Conjugacy classes in semisimple algebraic groups, AMS Mathematical Surveys and Monographs 43 (1995), 196.
J. E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, Vol 21, Springer-Verlag, New York, 1975.
A. Joyal and R. Street, Braided tensor categories, Adv. Math. 102 (1993), no. 1, 20-78.
S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate texts in mathematics, no. 5, Springer{Verlag, New York, 1998.
Y. Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. Jour. 16 (1960), 205-218.
S. Montgomery, Hopf algebras and their action on rings, CMBS Regional Conference Series in Mathematics, vol. 82, Published by the AMS, Providence, Rhode Island, 1993.
G. D. Mostow, Extensions of representations of Lie groups, II, Amer. J. of Math. 80 (1958), 331-347.
D. Mumford, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol 34, Springer-Verlag, Berlin, 1965.
D. Mumford, Hilbert'os fourteenth problem - the finite generation of subrings such as rings of invariants, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Vol. XXVIII, Northern Illinois Univ., De Kalb, Ill., 1974), Amer. Math. Soc.., Providence, R. I., 1976.
M. Nagata, On the fourteenth problem of Hilbert, Proc. Internat. Congress Math. 1958, Cambridge Univ. Press, New York (1960), 459-462.
M. Nagata, Lectures on the fourteenth problem of hilbert, Tata Institute of Fundamental Research, Bombay, 1965.
U. Oberst, Affine Quotientenschemata nach affinen, algebraischen Gruppen und induzierte Darstellungen, J. Algebra 44 (1977), no. 2, 503-538.
V. Popov, On the stability of the action of an algebraic group on an algebraic variety, Math. USSR Izv. 6 (1973), 367-379.
V. L. Popov and E. B. Vinberg, Invariant theory, algebraic geometry. iv, Enciclopae- dia of Mathematical Sciences, vol. 55, Springer-Verlag, Berlin, 1994, Linear algebraic groups. Invariant theory, A translation of Algebraic geometry. 4 (Russian), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, Translation edited by A. N. Parshin and I. R. Shafarevich.
L. Renner and A. Rittatore, Observable actions of algebraic groups, Transform. Groups 14 (2010), 985-999, arXiv:0902.0137v2[math.AG].
L. E. Renner, Orbits and invariants of visible group actions, Transform. Groups 14 (2012), no. 4, 1191-1208.
L. E. Renner, Observability in invariant theory, Proc. Amer. Math. Soc. 141 (2013), no. 1, 205-216.
L. E. Renner, Observability in invariant theory II: Divisors and rational invariants, Proc. Amer. Math. Soc. 143 (2015), no. 10, 4113-4121.
L. E. Renner, The adjoint action is observable, J. Algebra 441 (2015), 159-165.
R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc. 9 (1977), no. 1, 38-41.
M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 78 (1956), 401-443.
W. Ferrer Santos, Closed conjugacy classes, closed orbits and structure of algebraic groups, Comm. Algebra 19 (1991), no. 12, 3241-3248.
W. Ferrer Santos, A generalization of the concept of linearly and geometrically reductive group, Topics in Algebraic Geometry. Proceedings of the workshop on algebraic geometry. Eds. L. Brambila, X. Gómez-Mont. Guanajuato, Mexico, 1989. Aportaciones Matemáticas, Notas de Investigación , vol 5. Sociedad Matemática Mexicana, 1992.
W. Ferrer Santos and A. Rittatore, Linearly reductive and unipotent actions of affine groups, International Journal of Mathematics 26 (2015), no. 5, 1-31.
W. Ferrer Santos and A. Rittatore, Actions and Invariants of Algebraic Groups. 2d. Edition, Series: Monographs and Research Notes in Mathematics, CRC Press, Florida, 2017.
H.-J. Schneider, Principal homogeneous spaces for arbitrary Hopf algebras, Israel, J. of Mat. 72 (1990), no. 1-2, 167-195.
T. A. Springer, Linear algebraic groups, 2 ed, Modern Birkhäuser classics, Birkhäuser, Basel.
R. Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Mathematics, Vol. 366, Springer-Verlag, Berlin, 1974.
M. Sweedler, Hopf algebras, Mathematics Lecture Notes Series, W.A. Benjamin, inc.,New York, 1969.
A. Weil, On algebraic groups and homogeneous spaces, Amer. J. Math. 77 (1955), 493-512.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
Lizenz
Copyright (c) 2019 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.