Veröffentlicht
Connes-Landi spheres are homogeneous spaces
DOI:
https://doi.org/10.15446/recolma.v53nsupl.84099Schlagworte:
Noncommutative geometry, quantum homogeneous space, compact quantum group, Connes-Landi deformation, O-deformation (en)Geometría no conmutativa, espacio cuántico homogéneo, grupo cuántico compacto, deformación de Connes-Landi, O-deformación (es)
Downloads
Literaturhinweise
Alain Connes, Noncommutative geometry, Academic Press, 1995.
Alain Connes and Michael Dubois-Violette, Noncommutative finite-dimensional manifolds. i. spherical manifolds and related examples, Communications in Mathematical Physics 230 (2002), no. 3, 539-579.
Alain Connes and Giovanni Landi, Noncommutative manifolds: the instanton algebra and isospectral deformations, Communications in Mathematical Physics 221 (2001), no. 1, 141-159.
Chiara Pagani Giovanni Landi and Cesare Reina., A hopf bundle over a quantum four-sphere from the symplectic group, Communications in Mathematical Physics 263 (2006), no. 1, 65-88.
Giovanni Landi and Walter van Suijlekom, Principal fibrations from noncommutative spheres, Communications in Mathematical Physics 260 (2005), no. 1, 203-225.
Marc Rieffel, Deformation quantization for actions of rd, Memoirs of the American Mathematical Society 506 (1993), x+93 pp.
Marc Rieffel, Non-commutative tori - a case study of non-commutative differentiable manifolds, Contemporary Mathematics 145 (1993), 465-491.
Andrzj Sitarz, Rieffel's deformation quantization and isospectral deformations, International Journal of Theoretical Physics 40 (2001), no. 10, 1693-1696.
Joseph Várilly, Quantum symmetry groups of noncommutative spheres, Communications in Mathematical Physics 221 (2001), no. 3, 511-523.
Shuzhou Wang, Deformations of compact quantum groups via rieffel's quantization, Communications in Mathematical Physics 178 (1996), no. 1, 747-764.
Mitsuru Wilson, Quantum symmetries of the deformation quantization of compact lie groups, Submitted to Letters in Mathematical Physics (2019).
Stanislaw. Woronowicz, Compact matrix pseudogroups, Communication in Mathematical Physics 111 (1987), no. 1, 613-665.
Zitationsvorschlag
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Bibliografische Angaben herunterladen
CrossRef Cited-by
1. Carolina Neira Jiménez. (2024). Pseudodifferential Operators on Noncommutative Tori: A Survey. La Matematica, 3(3), p.1218. https://doi.org/10.1007/s44007-024-00122-0.
Dimensions
PlumX
Aufrufe der Abstractseiten von Artikeln
Downloads
Lizenz
Copyright (c) 2019 Revista Colombiana de Matemáticas
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung 4.0 International.