Euclidean algorithm and Kummer covers with many points
Schlagworte:
Algebraic curves, Finite fields, Rational points, Kummer extensions, Mathematics Subject Classification. Primary: 14G05. (en)Downloads
Abstract.
We give a simple and effective method for the construction of algebraic curves over finite fields with many rational points. The curves constructed are Kummer covers or fibre products of Kummer covers of the projective line.
Literaturhinweise
A. García & A Garzón, On Kummer Covers whith many Points, to appear in the Journal of Pure and Applied Algebra.
A. García & H. Stichtenoth, A Class of Polynomials over Finite Fields, Finite Fields and their Appl. 5 (1999), 4 24 -4 35.
A. García, H. Stichtenoth & C. P. Xing, On Subfields of the Hermitian Function Field, Compositio Math. 120 (2000), 137-170.
G Van der Geer & M. Van der Vlugt, Kummer Covers with many Rational Points, Finite Fields and their Appl. 6 (2000), 327-341.
G Van der Geer & M. Van der Vlugt, Tables for the function Nq(g), available at http://www.wins.uva.nl/~ geer.
H. Hasse, Theorie der relativ zyklischen algebraischen Funktionenkorper, J. Reine Angew. Math. 172 (1934), 37-54.
V. D. Goppa, Codes on algebraic curves. Sov. Math. Dokl. 24 (1981), 170-172.
Y. Ihara, Some remarks on the number of rational points of algebraic curves over finite Reids, J. Fac. Sei. Tokyo 28 (1981), 721-724.
R. Lil d & H. Niederreiter, Finite Fields and Applications, Cambridge Univ. Press, Cambridge, 1994.
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.
V. Shabat, Tables of curves with many points, available at the Web site http://www.wins.uva.nl/~shabat/tables.html