On certain closed subgroups of SL(2, ℤP[[X]])
Schlagworte:
Closed subgroups, Special linear group, Iwasawa algebra, 2000 Mathematics Subject Classification, Primary: 15A33, 15A54, Secondary: 11F80 (en)Downloads
Abstract. Let p > 2 be a prime number and let Λ = ℤP[[X]] be the ring of power series with p-adic integer coefficients. The special linear group of matrices SL(2, Λ) is equipped with several natural projections. In particular, let πx : SL(2, Λ) → SL(2, ℤP) be the natural projection which sends X ↦ 0. Suppose that G is a subgroup of SL(2, Λ) such that the projection H = πx (G) is known. In this note, different criteria are found which guarantee that the subgroup G of SL(2, Λ) is “as large as possible”, i.e. G is the full inverse image of H. Criteria of this sort have interesting applications in the theory of Galois representations.
Sea p > 2 un primo y Λ = ℤP[[X]] el anillo de series de potencias con coeficientes enteros p-adicos. El grupo lineal de matrices especial SL(2, Λ) es equipado con varias proyecciones naturales. En particular, πx : SL(2, Λ) → SL(2, ℤP) es la proyección natural que envia X ↦ 0. Suponga que G es un subgrupo de SL(2, Λ) tal que la proyección H = πx (G) es conocida. En este artículo se establecen diferentes criterios que garantizan que el subgrupo G de SL(2, Λ) es “tan grande como es posible” ; esto es, G es la imagen inversa total de H. Criterios de esta naturaleza tienen importantes aplicaciones a la teoría de representaciones de Galois.
Literaturhinweise
N. Boston, Appendix to [5], Compositio Mathematica 59 (1986), 261-264.
H. Hida, Iwasawa modules attached to congruences of cusp forms, Annales Scientifiques de l’Ecole Normale Supérieure, Quatrième Série (4) 19 no. 2 (1986), 231-273.
H. Hida, Galois representations into GL2 ℤP[[X]] attached to ordinary cusp forms, Inventiones Mathematicae 85 no. 3 (1986), 545-613.
A. LOZANO-ROBLEDO, On elliptic units and p-adic Galois representations attached to elliptic curves, To appear in the Journal of Number Theory.
B. Mazur & A. Wiles, On p-adic analytic families of Galois representations, Compositio Mathematica 59 (1986), 231-264.
D. E. Rohrlich, A deformation of the Tate module, Journal of Algebra 229 (2000), 280-313.
D. E. Rohrlich, Modular units and the surjectivity of a Galois representation, Journal of Number Theory 107 (2004), 8-24.
J. S. Rose, A Course on Group Theory, Dover Publications, Inc., New York, 1994.
J-P. Serre, Abelian l-adic Representations and Elliptic Curves, W.A. Benjamin, Inc., New York, 1968.
J-P. SERRE, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Inventiones Mathematicae 15 (1972), 250-331.