Veröffentlicht

2005-07-01

On the normality of operators

Schlagworte:

Normal operators, Hilbert space, Hermitian operators, 2000 Mathematics Subject Classification, Primary: 47A15, Secondary: 47B20, 47A63 (en)

Downloads

Autor/innen

  • King Saud University, Saudi Arabia

Abstract. In this paper we will investigate the normality in (WN) and (Y) classes.

Literaturhinweise

C. K. Fong & V. I. Istratescu, Some characterizations of hermitian operators and related classes of operators I, Proc. Amer. Math. Soc., 76 (1979), 107-112.

M. A. Kaashoek & M. R. F. Smyth, On operators T such that ƒ(T) is Riesz or meromorphic, Proc. Royal Irish Acad., 72 (1972), 81-87.

F. Kittaneh, Linear operators for which (ReT)2 ≤ |T|2, Tamkang J. Math., 11 no. 1 (1980), 11-115.

F. Kittaneh, On the structure of polynomially norm al operators, Bull. Austral. Math. Soc., 30 (1984), 11-18.

S. Mecheri, Some variants of Weber’s theorem, Mathematical Proceeding of the Royal Irish Academy, 104 A no. 1 (2004), 67-73.

S. Mecheri, Commutants and derivation ranges, Czechoslovak. Math. J., 49 no. 124 (1999), 843-847.

S. Mecheri, Finite operators, Demonstratio. Math., 3 7 (2002), 357-366.

S. Mecheri, Generalized finite operators, Demonstratio. Math., 38 no. 1 (2005), 163-167.

C. Olsen, A structure theorem for polynomial compact operators, American. J. Math., 63 (1971), 686.

J. G. Stampfli & B. L. Wadhwa, On dominant operators, Monatsh. Math., 84 (1977), 143 -153.

A. Uchiyama & T. Yoshino, On the class (y) operators, Nihonkai. Math. J., 8 (1997), 179-194.

J. P. Williams, Finite operators, Proc. Amer. Math. Soc., 26 (1970), 129-135.

R. E. Weber, Derivation and the trace class operators, Proc. Amer. Math. Soc., 73 (1979), 79-82.

Zitationsvorschlag

APA

Salah. (2005). On the normality of operators. Revista Colombiana de Matemáticas, 39(2), 87–95. https://revistas.unal.edu.co/index.php/recolma/article/view/94600

ACM

[1]
Salah 2005. On the normality of operators. Revista Colombiana de Matemáticas. 39, 2 (Juli 2005), 87–95.

ACS

(1)
Salah. On the normality of operators. rev.colomb.mat 2005, 39, 87-95.

ABNT

SALAH. On the normality of operators. Revista Colombiana de Matemáticas, [S. l.], v. 39, n. 2, p. 87–95, 2005. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94600. Acesso em: 22 jan. 2025.

Chicago

Salah. 2005. „On the normality of operators“. Revista Colombiana De Matemáticas 39 (2):87-95. https://revistas.unal.edu.co/index.php/recolma/article/view/94600.

Harvard

Salah (2005) „On the normality of operators“, Revista Colombiana de Matemáticas, 39(2), S. 87–95. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/94600 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
Salah, „On the normality of operators“, rev.colomb.mat, Bd. 39, Nr. 2, S. 87–95, Juli 2005.

MLA

Salah. „On the normality of operators“. Revista Colombiana de Matemáticas, Bd. 39, Nr. 2, Juli 2005, S. 87-95, https://revistas.unal.edu.co/index.php/recolma/article/view/94600.

Turabian

Salah. „On the normality of operators“. Revista Colombiana de Matemáticas 39, no. 2 (Juli 1, 2005): 87–95. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94600.

Vancouver

1.
Salah. On the normality of operators. rev.colomb.mat [Internet]. 1. Juli 2005 [zitiert 22. Januar 2025];39(2):87-95. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/94600

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

47

Downloads

Keine Nutzungsdaten vorhanden.