Veröffentlicht

2006-01-01

The analytic fixed point function II

Schlagworte:

Fixed point function, Coefficients, Bürmann-Lagrange, Asymptotics, Equilibrium, First return, Branching process, 2000 Mathematics Subject Classification, Primary: 30B10, Secondary: 60F99, 60J80 (en)

Downloads

Autor/innen

  • Universidad Nacional de Colombia (Sede Medellín)
  • Technische Universität, Berlin

Abstract. Let ϕ be analytic in the unit disk ⅅ and let ϕ (ⅅ) ⊂ ⅅ, ϕ (0). Then w = ƶ/ϕ (ƶ) has an analytic inverse ƶ = ƒ (w) for w ϵ ⅅ, the fixed point function. This paper studies the case that ϕ (1) = ϕ'(1) = 1 with a growth condition for ϕ"(χ) and determines the asymptotic behaviour of various combinations of the coefficients of ϕ connected with ƒ. The results can be interpreted in various contexts of probability theory.

Literaturhinweise

[AtNe72] K. B. Athreya & P. E. Ney, Branching processes, Springer, Berlin, 1972.

[Fe68] W. Feller, An introduction to probability theory and its applications I, John Wiley & Sons, New York, 1968.

[Gä77] J. Gärtner, On large deviations from the invariant measure, Theory Probab. Appl. 22 (1977), 24-39.

[KaNa94] A. V. Karpenko & V. Nagaev, Limit theorems for the total number of descendants for the Galton-Watson branching process, Theory Probab. Appl. 38 (1994), 433-455.

[MePo05] D. Mejia & Ch. Pommerenke, The analytic fixed point function in the disk, Comput. Methods Fund. Theory, 5 no. 2 (2005), 275-299.

[Pe75] V. V. Petrov, Sums of independent random variables, Springer, Berlin, 1975.

[PoSz25] G. Pöya & G. Szegö, Aufgaben und Lehrsätze aus der Analysis I, Springer, Berlin, 1925. [Po92] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer, Berlin, 1992.

Zitationsvorschlag

APA

Diego und Christian. (2006). The analytic fixed point function II. Revista Colombiana de Matemáticas, 40(1), 39–52. https://revistas.unal.edu.co/index.php/recolma/article/view/94669

ACM

[1]
Diego und Christian 2006. The analytic fixed point function II. Revista Colombiana de Matemáticas. 40, 1 (Jan. 2006), 39–52.

ACS

(1)
Diego; Christian. The analytic fixed point function II. rev.colomb.mat 2006, 40, 39-52.

ABNT

DIEGO; CHRISTIAN. The analytic fixed point function II. Revista Colombiana de Matemáticas, [S. l.], v. 40, n. 1, p. 39–52, 2006. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94669. Acesso em: 22 jan. 2025.

Chicago

Diego, und Christian. 2006. „The analytic fixed point function II“. Revista Colombiana De Matemáticas 40 (1):39-52. https://revistas.unal.edu.co/index.php/recolma/article/view/94669.

Harvard

Diego und Christian (2006) „The analytic fixed point function II“, Revista Colombiana de Matemáticas, 40(1), S. 39–52. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/94669 (Zugegriffen: 22 Januar 2025).

IEEE

[1]
Diego und Christian, „The analytic fixed point function II“, rev.colomb.mat, Bd. 40, Nr. 1, S. 39–52, Jan. 2006.

MLA

Diego, und Christian. „The analytic fixed point function II“. Revista Colombiana de Matemáticas, Bd. 40, Nr. 1, Januar 2006, S. 39-52, https://revistas.unal.edu.co/index.php/recolma/article/view/94669.

Turabian

Diego, und Christian. „The analytic fixed point function II“. Revista Colombiana de Matemáticas 40, no. 1 (Januar 1, 2006): 39–52. Zugegriffen Januar 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94669.

Vancouver

1.
Diego, Christian. The analytic fixed point function II. rev.colomb.mat [Internet]. 1. Januar 2006 [zitiert 22. Januar 2025];40(1):39-52. Verfügbar unter: https://revistas.unal.edu.co/index.php/recolma/article/view/94669

Bibliografische Angaben herunterladen

Aufrufe der Abstractseiten von Artikeln

16

Downloads

Keine Nutzungsdaten vorhanden.