On the semilocal convergence of a fast two-step Newton method
Convergencia semilocal de un método de Newton de dos pasos
Schlagworte:
Two-step Newton method, Newton method, Banach space, Majorizing sequence, Newton-Kantorovich hypothesis, Semilocal convergence, Fréchet-derivative, 2000 Mathematics Subject Classification. 65H10, 65G99, 47H17, 49M15 (en)Método de Newton de dos pasos, Método de Newton, Espacio de Banach, Secuencia mayorante, Hipótesis de Newton-Kantorovich, Convergencia semilocal, Derivada de Fréchet (es)
Downloads
Abstract. We provide a semilocal convergence analysis for a cubically convergent two-step Newton method (2) recently introduced by H. Homeier [8], [9], and also studied by A. Ӧzban [13]. In contrast to the above works we examine the semilocal convergence of the method in a Banach space setting, instead of the local in the real or complex number case. A comparison is given with a two step Newton-like method using the same information.
Proporcionamos un análisis de convergencia semilocal para un método de Newton de dos pasos, cúbicamente convergente, recientemente introducido por H. Homeier [8], [9], también estudiado por A. Ӧzban [13]. En contraste con esto, examinamos la convergencia local del método en espacios de Banach en lugar del local, en el caso real y complejo. Damos una comparación con el método de Newton de dos pasos usando la misma información.
Literaturhinweise
Amat, S., Busquier, S., and Salanova, M. A. A fast Chebyshev’s method for quadratic equations. Appl. Math. Comput. 148 (2004), 461-474.
Appel, J., DePascale, E., Lysen k o, J. V., and Zabrejk o, P. P. New result on Newton-Kantorovich approximations with applications to nonlinear integral equations. Numer. Fund. Anal, and Optimiz. 18, 1-2 (1997), 1-17.
Argyros, I. K. A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Applic. 298 (2004), 374-397.
Argyros, I. K. Convergence and applications of Newton-type iterations. Springer Verlag, New York, 2008.
Argyros, I. K., and Chen, D. On the midpoint method for solving nonlinear operator equations and applications to th e solution of integral equations. Revue d ’Analyse Numérique et de Théorie de VApproximation 23 (1994), 139-152.
Gutierrez, J. M., and Hernandez, M. A. An acceleration of Newton’s method: Super-Hailey method. Appl. Math. Comp. 117 (2001), 223-239.
Hernandez, M. A., and Salanova, M. A. Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev methods. J. Comput. Appl. Math. 126 (2000), 131-143.
Homeir, H. A modified method for root finding with cubic convergence. J. Comput. Appl. Math. 157 (2003), 227-230.
Homeir, H. A modified Newton method with cubic convergence. J. Comput. Appl. Math. 169 (2004), 161-169.
Kantorovich, L. V., and Akilov, G. P. Functional Analysis in Normed Spaces. Pergamon Press, Oxford, 1982.
K. Argyros, I., and Chen, D. The midpoint method for solving equations in Banach spaces. Appl. Math. Letters 5 (1992), 7-9.
Ortega, J. M., and Rheinboldt, W. C. Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York, 1970.
Ӧzban, A. Y. Some new variants of Newton’s method. Appl. Math. Letters 17 (2004), 677-682. [14] Yamamoto, T. A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51 (1987), 545-557.