Source terms identification for time fractional diffusion equation
Identificación de términos fuente en ecuaciones de difusión en las que la derivada con respecto al tiempo es fraccional
Schlagworte:
Ill-Posed Problems, heat source identification, Caputo fractional derivatives, time fractional diffusion equation, mollification techniques, 2000 Mathematics Subject Classification. 65M06, 65M12, 65M30, 65M32 (en)Problemas mal condicionados, identificación de una fuente de calor, ecuación de difusión con derivada fraccional en la dirección del tiempo, técnicas de molificación, derivadas fraccionales de Caputo (es)
Downloads
Abstract. We introduce a regularization technique for the approximate reconstruction of spatial and time varying source terms using the observed solutions of the forward time fractional diffusion problem on a discrete set of points. The numerical method is based on computation of the derivatives of adaptive filtered versions of the noisy data by discrete mollification.
Partial support from a C. P. Taft Fellowship. '
Partial support from Universidad Complutense de Madrid, España and Universidad Nacional de Colombia, DIME project number 30802867.
Presentamos una técnica de regularización para la reconstrucción numérica de términos fuente dependientes de espacio y tiempo a partir de aproximaciones de la solución del problema directo en un conjunto discreto de puntos. El método se basa en el cálculo de derivadas de versiones de los datos aproximados que se obtienen con el filtro adaptativo denominado molificación discreta.
Literaturhinweise
Acosta, C., and Mejía, C. Stabilization of explicit methods for convection diffusion equations by discrete mollification. Computers Math. Applic. 55 (2008), 368-380.
Agrawal, O. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynamics 29 (2002), 145-155.
Cannon, J., and DuChateau, P. Inverse problems for an unknown source in the heat equation. Mathematical Analysis and Applications, 75 (1980), 465—485.
Caputo, M. Elastica e Dissipazione. Zanichelli, Bologna, 1969.
Chavent, G., and Jaffre, J. Mathematical Models and Finite Elements for Reservoir Simulation. North Holland, Amsterdam, 1986.
Chavez, A. Fractional diffusion equation to describe Lfevy flights. Phys. Lett. 239, A (1998), 13-16.
Chen, C.-M., Liu, F., Turner, I., and Anh, V. A fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. (2007). doi: 10.1016/j.jcp.2007.05.012.
Coles, C., and Murio, D. A. Simultaneous space diffusivity and source term reconstruction in 2D IHCP. Computers Math. Applic. 4% (2001), 1549-1564.
Diethelm, K., Ford, N., Freed, A., and Luchko, Y. Algorithms for the fractional calculus: a selection of numerical methods. Computer Methods in Applied Mechanics and Engineerin 194, 6 (2005), 743-773.
Elden, L. Solving an inverse heat conduction problem by a “method of lines”. Journal of Heat Transfer 119 (1997), 406-412.
Ewing, R., and Lin, T. Parameter identification problems in single-phase and two-phase flow. Birkhauser Verlag, Basel, 1989. International Series of Numerical Mathematics, 91.
Ewing, R., Lin, T., and Falk, R. Inverse and Ill-Posed Problems. Academic Press, Orlando, 1987, ch. Inverse and ill-posed problems in reservoir simulation, pp. 483-497. H. Engl and C. Groetsch eds.
Langlands, T., and Henry, B. The accuracy and stability of an implict solution method for the fractional diffusion equation. Journal of Computational Physics 205 (2005), 719-736.
Llu, F., Anh, V., and Turner, I. Numerical solution of the space fractional Fokker-Planck equation. JCAM 166 (2004), 209-219.
Mainardi, F. Fractals and Fractional Calculus Continuum Mechanics. Springer Verlag, New York, 1997, ch. Calculus: some basic problems in continuum and statistical mechanics, pp. 291-348. A. Carpinteri and F. Mainardi eds.
Mainardi, F., Luchko, Y., and Pagnini, G. The fundamental solution of the space-time fractional diffusion equation. Fractional Calculus and Applied Analysis 4 (2001), 153-192.
Meerschaert, M., and Tadjeran, C. Finite difference approximations for fractional advection-dispersion flow equations. JCAM 172 (2004), 65-77.
Mejía, C., and Murio, D. A. Numerical solution of the generalized IHCP by discrete mollification. Computers Math. Applic 32, 2 (1996), 33-50.
Murio, D. A. The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley (Interscience), New York, 1993.
Murio, D. A. Inverse Engineering Handbook. CRC Press, Boca Raton, Florida, 2002, ch. Mollification and Space Marching. K. Woodbury ed.
Murio, D. A. On the stable numerical evaluation of Caputo fractional derivatives. Computers and Mathematics with Applications 51 (2006), 1539-1550.
Murio, D. A. Implicit finite difference approximation for time fractional diffusion equations. Submitted, 2007.
Murio, D. A. Stable numerical evaluation of Griinwald-Letnikov fractional derivatives. In Proceedings of Inverse Problems, Design and Optimization Symposium (Florida, 2007), G. S. D. et al., Ed., vol. I, Florida International University, pp. 44-48.
Murio, D. A., Mejía, C., and Zhan, S. Discrete mollification and automatic numerical differentiation. Computers Math. Applic. 35, 5 (1998), 1-16.
Nanda, A., and Das, P. Determination of the source term in the heat conduction equation. Inverse Problems 12 (1996), 325-339.
Oldham, K., and Spanier, J. The Fractional Calculus. Academic Press, New York, 1974.
Podlubny, I. Fractional Differential Equations. Academic Press, New York, 1999.
Samko, S., Kllbas, A., and Marichev, O. Fractional Integrals and Derivatives. Gordon and Breach Sciences Publishers, London, 1993.
Shen, S., Liu, F., Anh, V., and Turner, I. Detailed analysis of an explicit con servative difference approximation for the time fractional diffusion equation. J. Appl. Math. Computing 22, 3 (2006), 1-19.
Wheeler, M., Ed. Numerical Simulations in Oil Recovery. Springer-Verlag, New York, 1988.
Yi, S., and Murio, D. A. Source terms identification for the diffusion equation. In Proceedings Fourth International Conference on Inverse Problems in Engineering (Rio de Janeiro, 2002), H. Orlande, Ed., vol. I, pp. 100-107.
Yuste, S., and Acedo, L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. J. Numer. Anal. SIAM 42, 5 (2005), 1862-1874.
Zhan, S., and Murio, D. A. Surface fitting and numerical gradient computations by discrete mollification. Computers and Mathematics with Applications 37, 5 (1999), 85- 102.
Zhuang, P., and Liu, F. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Computing 22, 3 (2006), 87-99.
Zhuang, P., Liu, F., Anh, V., and Turner, I. New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal, to appear, 2007.