A note on Banach algebras that are not isomorphic to a group algebra
Una nota sobre álgebras de Banach no isomorfas a una álgebra de grupos
Schlagworte:
Amalgams, Dunford-Pettis property, Radon-Nikodym property, 2000 Mathematics Subject Classification. 46B03, 32A65, 46B22, 46jl0, 46E30, 47D20 (en)Amalgamas, propiedad de Dunford-Pettis, propiedad de Radon-Nikodym (es)
Downloads
Abstract. It is proved in this paper that several classical Banach algebras are not isomorphic to a group algebra. These algebras includes C(K) algebras where K is a compact Hausdorff space. In the case of amalgams, we give conditions for an amalgam to be a group algebra.
En este artículo se prueba que algunas álgebras de Banach clásicas no son isomorfas a un álgebra de grupo. Estas álgebras incluyen a las álgebras C(K) donde K es un espacio de Hausdorff Compacto. En el caso de las amalgamas, damos condiciones para que una amalgama sea un álgebra de grupo.
Literaturhinweise
Bachman, G. Elements of Abstract Harmonic Analysis. Academic Press, New York, 1964.
Bertrandias, J. P., Datry, C., and Dupuis , C. Union et intersections d’ espaces lp invariantes par traslation ou convolution. Ann. Inst. Fourier 28, 2 (1978), 53-84.
Bottcher, A ., Karlovich, Y . I., and Spitkovsky, I. Convolution Operator and Factorization of Almost Periodic Matrix Functions. Birkhauser, Basel, 2002.
Carother, N. A short Course on Banach Spaces Theory. Cambridge University Press, Cambridge, 2005.
Conway, J. B. A Course in Functional Analysis. Springer Verlag, New York, 1990.
Conway, J. B. A Course in Operator Theory. No. 21 in GMS. AMS, Providence, 2000.
Diestel, J. A survey of results related the Dunford Pettis property. Contemporary Math. 2 (1980), 15-60.
Diestel, J. Sequences and Series in Banach Spaces. Springer Verlag, Berlin, 1984.
Diestel, J., and Uhl, J. J. Vector Measures. No. 15 in Math. Surveys. Amer. Math. Soc., Providence, 1977.
Dunford, N., and Schwartz, J. T. Linear Operator. Part I: General Theory. Wiley Intercience, New York, 1957.
Goldberg, R. On a space of functions of Wiener. Duke Math. 34, 5 (1967), 683-691.
Holland, F. Harmonic analysis on amalgams of l^p and l^q. J. London Math. Soc. 10, 2 (1975), 195-305.
Stewart, J., and Watson, S. Which amalgams are convolution algebras? Proc. Amer. Math. Soc. 93, 4 (1985), 621-627.
Wojtaszcyk, P. Banach Spaces for Analyst. Cambridge University Press, Cambridge, 1991.
Zelasco, W. On the algebras lp of locally compact groups. Colloq. Math. 8 (1961), 115-120.