Caracterización de funcionales lineales asociados a formas bilineales de tipo Sobolev
Characterization of linear functionals associated to bilinear forms of Sobolev type
Schlagworte:
Producto de Soboley, teorema de Favard, sucesión de momentos, 2000 Mathematics Subject Classification. 30E05 (es)Sobolev’s Product, Favard’s theorem, sequence of moments (en)
Downloads
En este trabajo se caracterizan las formas bilineales cuyos funcionales asociados anulen a los múltiplos de (χȳ — 1 )2n+1, primero cuando éstos son funcionales generales, posteriormente cuando éstos son hermíticos. También se caracterizan las sucesiones de momentos asociadas a estas formas bilineales y se presenta un análogo del teorema de Favard.
Abstract. In this work we characterize the bilinear forms whose associated functionals vanish the multiples of (χȳ — 1 )2n+1, n = 0, 1 ,..., first when they are general functionals and later on when they are hermitian. Besides we characterize the sequences of moments associated to this bilinear forms and an analog of Favard’s Theorem is presented.
Literaturhinweise
Barrios, D., López, G., and Pijeira, H. The moment problem for a Sobolev inner product. J. Approx. Theory 100 (1999), 364-380.
Berriochoa, E., and Cachafeiro, A. A family of Sobolev orthogonal polynomials on the unit circle. J. Comput. Appl. Math. 105 (1999), 163-173.
Berriochoa, E., and Cachafeiro, A. Strong asymptotics inside the unit circle for Sobolev orthogonal polynomials. Comput. Math, and Appl. 44 (2002), 253-261.
Berriochoa, E., and Cachafeiro, A. On the strong asymptotics for Sobolev orthogonal polynomials on the circle. Const. Approx. 19 (2003), 299-307.
Durán, A. J. A generalization of Favard’s theorem for polynomials satisfying a recurrence relation. J. Approx. Theory 74 (1993), 83-109.
López, G., and Pijeira, H. Zero location and n—th root asymptotics of Sobolev orthogonal polynomials. J. Approx. Theory 99 (1999), 30-43.
López, G., and Pijeira, H., and Pérez, I. Sobolev orthogonal polynomials in the complex plane. J. Comput. Appl. Math. 127 (2001), 219-230.
Marcellán, F., and Álvarez-Nodarse, R. On the “Favard” theorem and their extensions. J. Comput. Appl. Math. 127 (2001), 231-254.
Marcellán, F., and Szafraniec, F. The Sobolev-type moment problem. Proc. Amer. Math. Soc 128 (2000), 2309-2317.
Marcellán, F., and Szafraniec, F. A matrix algorithm towards solving the moment problem of Sobolev type. Lin. Alg. and its Appl. 331 (2001), 155-164.
Pijeira, H. Teoría de momentos y propiedades asintóticas para polinomios ortogonales de Sobolev. Tesis doctoral, Universidad Carlos III de Madrid, 1998.
Robert, L. General orthogonal polynomials. Master’s thesis, University of Havana, Cuba, 2001. [13] Robert, L., and Santiago, L. The finite section method for Hessenberg matrices. J. Approx. Theory 123 (2003), 69-88.
Robert, L., and Santiago, L. On a class of Sobolev scalar products in the polynomials. J. Approx. Theory 125 (2003), 169-189.
Shohat, J. A., and Tamarkin, J. D. The Problem of Moments. American Mathematical Society, Providence, RI, 1963.
Zagorodnyuk, S. M. Analog of Favard’s theorem for polynomials connected with difference equation of 4th orde. Serdica Math. J. 27 (2001), 193-202.
Zagorodnyuk, S. M. On the moment problem of discrete Sobolev type. Ukrain. Math. Bull. 2 (2005), 345-360. (In Russian). 2 (2005), 351-367. (In English).