Published
Ternary arithmetic, factorization, and the class number one problem
Aritmética ternaria, factorización, y el problema de número de clase uno
DOI:
https://doi.org/10.15446/recolma.v55n2.102612Keywords:
Factorization, primality testing, quadratic fields (en)Factorización, prueba de primalidad, campos cuadráticos (es)
Downloads
Ordinary multiplication of natural numbers can be generalized to a ternary operation by considering discrete volumes of lattice hexagons. With this operation, a natural notion of ‘3-primality’ -primality with respect to ternary multiplication- is defined, and it turns out that there are very few 3-primes. They correspond to imaginary quadratic fields Q(√-n), n > 0, with odd discriminant and whose ring of integers admits unique factorization. We also describe how to determine representations of numbers as ternary products and related algorithms for usual primality testing and integer factorization.
La multiplicación usual de numeros naturales se puede generalizar a una operación ternaria en consideración de volúmenes discretos de hexágonos de retícula. Con esta operación, se define una noción de ‘3-primalidad’ y resulta que hay muy pocos números que son 3-primos. Éstos corresponden a cuerpos cuadráticos imaginarios Q(√-n), n > 0, de discriminante impar cuyos anillos de enteros admiten factorización única. También describimos cómo obtener representaciones de números enteros como productos ternarios y algoritmos relacionados de chequeo de primalidad y factorización ordinaria.
References
T. M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929 DOI: https://doi.org/10.1007/978-1-4757-5579-4
D. M. Bressoud, Factorization and primality testing, Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1989. MR 1016812 DOI: https://doi.org/10.1007/978-1-4612-4544-5
D. A. Cox, Primes of the form x2 + ny2, second ed., Pure and Applied Mathematics (Hoboken), John Wiley & Sons, Inc., Hoboken, NJ, 2013, Fermat, class field theory, and complex multiplication. MR 3236783
H. S. M. Coxeter, Introduction to geometry, second ed., John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0346644
D. Goldfeld, Gauss's class number problem for imaginary quadratic fields, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 23-37. MR 788386 DOI: https://doi.org/10.1090/S0273-0979-1985-15352-2
J. Hoffstein, J. Pipher, and J. H. Silverman, An introduction to mathematical cryptography, second ed., Undergraduate Texts in Mathematics, Springer, New York, 2014. MR 3289167 DOI: https://doi.org/10.1007/978-1-4939-1711-2
K. Ireland and M. Rosen, A classical introduction to modern number theory, second ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716 DOI: https://doi.org/10.1007/978-1-4757-2103-4
C. Pomerance, A tale of two sieves, Notices Amer. Math. Soc. 43 (1996), no. 12, 1473-1485. MR 1416721
G. Rabinowitsch, Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern, J. Reine Angew. Math. 142 (1913), 153-164. MR 1580865 DOI: https://doi.org/10.1515/crll.1913.142.153