Published

2022-05-18

A self-contained guide to Frécon's theorem

Una guía autocontenida al teorema de Frécon

DOI:

https://doi.org/10.15446/recolma.v55n2.102739

Keywords:

groups of finite Morley rank, bad groups (en)
Grupos de rango de Morley finito, grupos malos (es)

Downloads

Authors

  • Luis Jaime Corredor Universidad de los Andes
  • Adrien Deloro Université de Paris

A streamlined exposition of Frécon's theorem on non-existence of bad groups of Morley rank 3. Systematising ideas by Poizat and Wagner, we avoid incidence geometries and use group actions instead; the proof becomes short and completely elementary.

Presentamos una breve demostración depurada del teorema de Frécon sobre la no existencia de grupos malos de rango de Morley 3. Abstrayendo ideas de Poizat y Wagner, evitamos el uso de las geometrías de incidencia. En su lugar usamos acciones de grupos; así la demostración se torna verdaderamente elemental y concisa.

References

A. Borovik and A. Nesin, Groups of finite Morley rank, Oxford Logic Guides, vol. 26, The Clarendon Press, Oxford University Press, New York, 1994, Oxford Science Publications. MR MR1321141 (96c:20004)

G. Cherlin, Groups of small Morley rank, Ann. Math. Logic 17 (1979), no. 1-2, 1-28. MR 552414 (81h:03072) DOI: https://doi.org/10.1016/0003-4843(79)90019-6

A. Deloro and J. Wiscons, The geometry of involutions in ranked groups with a TI-subgroup, JLMS 52 (2020), no. 3, 411-428. DOI: https://doi.org/10.1112/blms.12334

O. Frécon, Simple groups of Morley rank 3 are algebraic, J. Amer. Math. Soc. 31 (2018), no. 3, 643-659. MR 3787404 DOI: https://doi.org/10.1090/jams/892

B. Poizat, Milieu et symétrie, une étude de la convexité dans les groupes sans involutions, J. Algebra 497 (2018), 143-163. MR 3743178 DOI: https://doi.org/10.1016/j.jalgebra.2017.10.007

B. Poizat and F. Wagner, Comments on a theorem by Olivier Frécon, Preprint arXiv:1609.06229 (Modnet 1095), 2016.

J. Reineke, Minimale Gruppen, Z. Math. Logik Grundlagen Math. 21 (1975), no. 4, 357-359. MR 0379179 (52 #85) DOI: https://doi.org/10.1002/malq.19750210145

F. Wagner, Bad groups, Mathematical Logic and its Applications (Makoto Kikuchi, ed.), RIMS Kôkyûroku, vol. 2050, Kyoto University, Kyoto, 2017, pp. 57-66.

How to Cite

APA

Corredor, L. J. . and Deloro, A. . (2022). A self-contained guide to Frécon’s theorem. Revista Colombiana de Matemáticas, 55(2), 205–210. https://doi.org/10.15446/recolma.v55n2.102739

ACM

[1]
Corredor, L.J. and Deloro, A. 2022. A self-contained guide to Frécon’s theorem. Revista Colombiana de Matemáticas. 55, 2 (May 2022), 205–210. DOI:https://doi.org/10.15446/recolma.v55n2.102739.

ACS

(1)
Corredor, L. J. .; Deloro, A. . A self-contained guide to Frécon’s theorem. rev.colomb.mat 2022, 55, 205-210.

ABNT

CORREDOR, L. J. .; DELORO, A. . A self-contained guide to Frécon’s theorem. Revista Colombiana de Matemáticas, [S. l.], v. 55, n. 2, p. 205–210, 2022. DOI: 10.15446/recolma.v55n2.102739. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/102739. Acesso em: 22 jan. 2025.

Chicago

Corredor, Luis Jaime, and Adrien Deloro. 2022. “A self-contained guide to Frécon’s theorem”. Revista Colombiana De Matemáticas 55 (2):205-10. https://doi.org/10.15446/recolma.v55n2.102739.

Harvard

Corredor, L. J. . and Deloro, A. . (2022) “A self-contained guide to Frécon’s theorem”, Revista Colombiana de Matemáticas, 55(2), pp. 205–210. doi: 10.15446/recolma.v55n2.102739.

IEEE

[1]
L. J. . Corredor and A. . Deloro, “A self-contained guide to Frécon’s theorem”, rev.colomb.mat, vol. 55, no. 2, pp. 205–210, May 2022.

MLA

Corredor, L. J. ., and A. . Deloro. “A self-contained guide to Frécon’s theorem”. Revista Colombiana de Matemáticas, vol. 55, no. 2, May 2022, pp. 205-10, doi:10.15446/recolma.v55n2.102739.

Turabian

Corredor, Luis Jaime, and Adrien Deloro. “A self-contained guide to Frécon’s theorem”. Revista Colombiana de Matemáticas 55, no. 2 (May 18, 2022): 205–210. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/102739.

Vancouver

1.
Corredor LJ, Deloro A. A self-contained guide to Frécon’s theorem. rev.colomb.mat [Internet]. 2022 May 18 [cited 2025 Jan. 22];55(2):205-10. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/102739

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

199

Downloads

Download data is not yet available.