Published

2023-04-17

Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts

Cotas superiores de las soluciones de F(2k)n = +F(2k)m con subíndices negativos

DOI:

https://doi.org/10.15446/recolma.v56n2.108374

Keywords:

k-generalized Fibonacci sequence, total multiplicity (en)
sucesiones de Fibonacci k-generalizadas, multiplicidad total (es)

Downloads

Authors

  • Attila Pethö University of Debrecen
  • László Szalay University of Sopron

In this paper, we provide an explicit upper bound on the absolute value of the solutions n < m < 0 to the Diophantine equation F(k)n = ±F(k)m, assuming k is even. Here {F(k)n}n ∈ Z denotes the k-generalized Fibonacci sequence. The upper bound depends only on k.

En este artículo presentamos una cota superior explícita para el valor absoluto de las soluciones con n < m < 0 de la ecuación Diofantina F(k)n = ±F(k)m, bajo la hipótesis que k es par. En la ecuación anterior {F(k)n}n ∈ Z denota la sucesión de Fibonacci k-generalizada. La cota superior sólo depende de k.

References

E. F. Bravo, C. A. Gómez, and F. Luca, Total multiplicity of the Tribonacci sequence, Colloq. Math. 159 (2020), 71-76. DOI: https://doi.org/10.4064/cm7730-2-2019

E. F. Bravo, C. A. Gómez, F. Luca, A. Togbé, and B. Kafle, On a conjecture about total multiplicity of Tribonacci sequence, Colloq. Math. 159 (2020), 61-69. DOI: https://doi.org/10.4064/cm7729-2-2019

G. P. B. Dresden and Z. Du, A simplified Binet formula for k-generalized Fibonacci numbers, J. Integer Seq. 17 (2014), Article 14.4.7, 9pp.

A. Dubickas, On the distance between two algebraic numbers, Bull. Malays. Math. Sci. Soc. 43 (2020), 3049-3064. DOI: https://doi.org/10.1007/s40840-019-00855-0

C. A. Gómez and F. Luca, On the zero-multiplicity of a fifth-order linear recurrence, Int. J. Number Theor. 15 (2019), 585-595. DOI: https://doi.org/10.1142/S1793042119500301

A. Pethö, On the k-generalized Fibonacci numbers with negative indices, Publ. Math. Debrecen 98 (2021), 401-418. DOI: https://doi.org/10.5486/PMD.2021.8912

D. A. Wolfram, Solving generalized Fibonacci recurrences, Fibonacci Quart. 36 (1988), 129-145.

How to Cite

APA

Pethö, A. and Szalay, L. (2023). Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts. Revista Colombiana de Matemáticas, 56(2), 179–187. https://doi.org/10.15446/recolma.v56n2.108374

ACM

[1]
Pethö, A. and Szalay, L. 2023. Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts. Revista Colombiana de Matemáticas. 56, 2 (Apr. 2023), 179–187. DOI:https://doi.org/10.15446/recolma.v56n2.108374.

ACS

(1)
Pethö, A.; Szalay, L. Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts. rev.colomb.mat 2023, 56, 179-187.

ABNT

PETHÖ, A.; SZALAY, L. Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts. Revista Colombiana de Matemáticas, [S. l.], v. 56, n. 2, p. 179–187, 2023. DOI: 10.15446/recolma.v56n2.108374. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/108374. Acesso em: 22 jan. 2025.

Chicago

Pethö, Attila, and László Szalay. 2023. “Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts”. Revista Colombiana De Matemáticas 56 (2):179-87. https://doi.org/10.15446/recolma.v56n2.108374.

Harvard

Pethö, A. and Szalay, L. (2023) “Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts”, Revista Colombiana de Matemáticas, 56(2), pp. 179–187. doi: 10.15446/recolma.v56n2.108374.

IEEE

[1]
A. Pethö and L. Szalay, “Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts”, rev.colomb.mat, vol. 56, no. 2, pp. 179–187, Apr. 2023.

MLA

Pethö, A., and L. Szalay. “Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts”. Revista Colombiana de Matemáticas, vol. 56, no. 2, Apr. 2023, pp. 179-87, doi:10.15446/recolma.v56n2.108374.

Turabian

Pethö, Attila, and László Szalay. “Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts”. Revista Colombiana de Matemáticas 56, no. 2 (April 17, 2023): 179–187. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/108374.

Vancouver

1.
Pethö A, Szalay L. Upper bound on the solution to F(2k)n = +F(2k)m with negative subscripts. rev.colomb.mat [Internet]. 2023 Apr. 17 [cited 2025 Jan. 22];56(2):179-87. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/108374

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Eric Fernando Bravo. (2023). Common Values of Padovan and Perrin Sequences. Mediterranean Journal of Mathematics, 20(5) https://doi.org/10.1007/s00009-023-02467-2.

Dimensions

PlumX

Article abstract page views

274

Downloads

Download data is not yet available.