Published
On Stable Sampling and Interpolation in Bernstein Spaces
Muestreo e Interpolación Estables en Espacios de Bernstein
DOI:
https://doi.org/10.15446/recolma.v56n2.108383Keywords:
Quasinormed spaces, stable sampling set, interpolation set, Paley-Wiener spaces, Bernstein spaces (en)Espacios quasinormados, conjunto de muestreo estable, conjunto de interpolación, espacios de Paley-Wiener, espacios de Bernstein (es)
Downloads
We define the concepts of stable sampling set, interpolation set, uniqueness set and complete interpolation set for a quasinormed space of functions and apply these concepts to Paley-Wiener spaces and Bernstein spaces. We obtain a sufficient condition on a uniformly discrete set to be an interpolation set based on a lemma of convergence of series in Paley-Wiener spaces. We also obtain a result of transference, Kadec type, of the property of being a stable sampling set, from a set with this property to other uniformly discrete set, which we apply to Bernstein spaces.
Definimos los conceptos de conjunto de muestreo estable, conjunto de interpolación, conjunto de unicidad y conjunto de interpolación completa para los espacios quasinormados de funciones, y aplicamos estos conceptos a los espacios de Paley-Wiener y a los espacios de Bernstein. También obtenemos una condición suficiente para saber cuando un conjunto uniformemente discreto es un conjunto de interpolación, estando basada esta condición en un lema de convergencia de series en espacios de Paley-Wiener. Además, obtenemos un resultado de transferencia, tipo Kadec, sobre la propiedad de ser un conjunto de muestreo estable, de un conjunto que tiene esta propiedad a otro cunjunto que sea uniformemente discreto, y aplicamos este resultado a los espacios de Bernstein.
References
A. Avantaggiati, P. Loreti, and P. Velluci, An Explicit Bound for Stability of Sinc Bases, Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics 1 (2015), 473-480, doi 10.5220/0005512704730480. DOI: https://doi.org/10.5220/0005512704730480
A. Avantaggiati, P. Loreti, and P. Velluci, Kadec-1/4 Theorem for Sinc Bases, ArXiv, 2016, ArXiv 1603.08762v1.
S. A. Avdonin, On the question of Riesz bases of exponential functions in L2, Vestnik Leningrad Univ. Math. 7 (1979), 203-211.
A. Beurling, Balayage of Fourier-Stieltjes Transforms. In: The Collected Works of Arne Beurling, Harmonic Analysis, vol. 2, Birkhäuser, 1989.
A. Beurling, Interpolation for an interval in R. In: The collected Works of Arne Beurling, Harmonic Analysis, vol. 2, Birkhäuser, 1989.
K. M. Flornes, Sampling and Interpolation in the Paley-Wiener Spaces Lp, 0 < p < 1, Publicacions Matemátiques 42 (1998). DOI: https://doi.org/10.5565/PUBLMAT_42198_04
J. R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, 1 ed., Clarendon Press, Oxford Science Publications, Oxford, 1996.
M. I. Kadec, The exact value of the Paley-Wiener constant, Sov. Math. Dokl. 5 (1964).
H. J. Landau, Necessary density conditions for sampling and interpolation of certain entire functions, Acta Math. 117 (1967). DOI: https://doi.org/10.1007/BF02395039
N. Levinson, Gap and Density Theorems, 1 ed., vol. 26, Colloquium Publications, American Mathematical Soc., 1940. DOI: https://doi.org/10.1090/coll/026
Y. I. Lyubarskii and K. Seip, Complete interpolating sequences for Paley-Wiener spaces and Muckenhoupt's Ap condition, Revista Matemática Iberoamericana 13 (1997), no. 2. DOI: https://doi.org/10.4171/RMI/224
B. Matei and Y. Meyer, A variant of compressed sensing, Rev. Mat. Iberoamericana 25 (2009), no. 2, 669-692. DOI: https://doi.org/10.4171/RMI/578
A. Olevskii and A. Ulanovskii, On multi-dimensional sampling and interpolation, Anal. Math. Phys. 2 (2012), no. 2, 149-170, doi 10.1007/s13324-012-0027-4. DOI: https://doi.org/10.1007/s13324-012-0027-4
A. Olevskii and A. Ulanovskii, On the duality between sampling and interpolation, Analysis Mathematica 42 (2016). DOI: https://doi.org/10.1007/s10476-016-0104-2
R. Paley and N. Wiener, Fourier transforms in the complex domain, Amer. Math. Soc. Colloquium Publications 19 (1934).
I. Pesenson, Bernstein-Nikolskii and Plancherel-Polya inequalities in Lp-norms on non-compact symmetric spaces, Mathematische Nachrichten 282 (2009), no. 2, 253-269, doi 10.1002/mana.200510736. DOI: https://doi.org/10.1002/mana.200510736
M. Plancherel and G. Pólya, Fonctions entiéres et intégrales de Fourier multiples (seconde partie), Comment. Math. Helv. 10 (1937), no. 1, 110-163, doi 10.1007/bf01214286. DOI: https://doi.org/10.1007/BF01214286
W. Rudin, Real and Complex Analysis, International Edition ed., McGraw-Hill Book Company, 1987.
A. M. Sedleckii, Nonharmonic Fourier Series, Sib. Math. J. 12 (1971a). DOI: https://doi.org/10.1007/BF00966517
A. M. Sedletskii, Nonharmonic Analysis, J. Math. Sc. 116 (2009), no. 5, 3551-3619. DOI: https://doi.org/10.1023/A:1024107924340
K. Seip, Interpolation and sampling in spaces of analytic functions, vol. 33, American Mathematical Society, University Lecture Series, 2004, doi 10.1007/bf01214286. DOI: https://doi.org/10.1090/ulect/033
C. E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal 27 (1948), no. 5, 379-423, 623-656. DOI: https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
R. Torres, Spaces of sequences, sampling theorem, and functions of exponential type, Studia Mathematica 100 (1991), no. 1, 51-74, http://eudml.org/doc/215873. DOI: https://doi.org/10.4064/sm-100-1-51-74
D. Ullrich, Divided differences and systems of nonharmonic Fourier series, Proc. Amer. Math. Soc. 80 (1980). DOI: https://doi.org/10.1090/S0002-9939-1980-0574507-8
R. M. Young, An introduction to Nonharmonic Fourier Series, 2 ed., Academic Press, 2001.