Published
A geometric mean algorithm of symmetric positive definite matrices
Cálculo de una media geométrica en el cono de las matrices simétricas definidas positivas
DOI:
https://doi.org/10.15446/recolma.v57n2.115858Keywords:
covariance mean, action recognition, symmetric positive- definite matrices, generalized eigenvalues, Cholesky decomposition (en)Media de covarianza, Reconocimiento de acciones, Matrices simetricas definidas positivas, Autovalores generalizados, Descomposición de Cholesky (es)
Downloads
This work introduces a geometric mean algorithm for positive definite matrices using generalized eigenvalue problems and Cholesky factorization. The geometric mean of a finite set of positive definite matrices minimizes the sum of square distances to all the matrices where the distance is an affine-invariant Riemannian metric in the manifold of the symmetric positive definite matrices SN++. In order to compute numerical approximations of the geometric mean several algorithms have been proposed. Some of these algorithms require the computation of several diagonalizations in each iteration. We show that by rewriting the iterations in terms of generalized eigenvalue problems, it is possible to omit some of the diagonalizations at the cost of introducing much less generalized eigenvalue problems that can be solved using Cholesky factorizations. We numerically compare the performance of classical methods and the modified algorithms that use generalized eigenvalue problems. The resulting method is applied to video analysis using the mean of covariance matrices as a compact descriptor for actions classification. The proposed mean descriptor with just 105 scalar values achieved an average accuracy of 75% over a publicaction video dataset.
Este trabajo presenta un algoritmo de media geométrica para matrices positivas definidas utilizando problemas de valores propios generalizados y la factorización de Cholesky. La media geométrica de un conjunto finito de matrices positivas definidas minimiza la suma de los cuadrados de las distancias al conjunto de matrices, donde la distancia es una métrica de Riemann invariante afin en la variedad de matrices definidas positivas simétricas SN++. Para calcular aproximaciones numéricas de la media geométrica se proponen varios algoritmos. Algunos de estos algoritmos requieren el cálculo de varias diagonalizaciones en cada paso. Mostramos que al reescribir las iteraciones de estos pasos en términos de un problema de valores propios generalizados, es posible omitir algunas de las diagonalizaciones a costa de introducir problemas de valores propios que pueden resolverse utilizando factorizaciones de Cholesky. Comparamos numéricamente el rendimiento de los métodos clásicos y los algoritmos modificados que utilizan problemas de valores propios generalizados. El método resultante se aplica al análisis de vídeo utilizando la media de matrices de covarianza como un descriptor compacto para la clasificación de acciones. El descriptor medio propuesto con solo 105 valores escalares logró una precisión promedio del 75% en un conjunto de datos de video.
References
V. Arsigny, P. Fillard, X. Pennec, and N. Ayache, Geometric Means in a Novel Vector Space Structure on Sysmetric Positive-Definite Matrices, SIAM J. Matrix Analysis Applications 29 (2006), 328-347.
A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Multiclass Brain-Computer Interface Classification by Riemannian Geometry, IEEE Transactions on Biomedical Engineering 59 (2012), no. 4, 920-928.
A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Classification of Covariance Matrices Using a Riemannian-Based Kernel for BCI Applications, Neurocomput. 112 (2013), 172-178.
A. Barachant and J-R. King, pyriemann v0.2.2, June 2015.
R. Bhatia and J. Holbrook, Riemannian geometry and matrix geometric means, Linear Algebra and its Applications 413 (2006), no. 2, 594-618, Special Issue on the 11th Conference of the International Linear Algebra Society, Coimbra, 2004.
D. A. Bini and B. Iannazzo, Computing the Karcher mean of symmetric positive definite matrices, Linear Algebra and its Applications 438 (2013), no. 4, 1700-1710.
T. Brox and J. Malik, Large displacement optical flow: Descriptor matching in variational motion estimation, IEEE transactions on pattern analysis and machine intelligence 33 (2011), 500-13.
X. Cao, H. Zhang, C. Deng, Q. Liu, and H. Liu, Action recognition using 3D DAISY descriptor, Machine Vision and Applications 25 (2014), 159-171.
K. N. e. H. Slimani, Y. Benezeth, and F. Souami, Human interaction recognition based on the co-occurrence of visual words, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014, pp. 461-466.
P. T. Fletcher and S. Joshi, Riemannian Geometry for the statistical analysis of diffusion tensor Data, Signal Processing 87 (2007), 250-262.
K. Guo, P. Ishwar, and J. Konrad, Action Recognition From Video Using Feature Covariance Matrices, IEEE Transactions on Image Processing 22 (2013), no. 6, 2479-2494.
N. J. Higham, Functions of Matrices: Theory and Computation (Other Titles in Applied Mathematics), Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.
B. Iannazzo and M. Porcelli, The Riemannian Barzilai?Borwein method with nonmonotone line search and the matrix geometric mean computation, IMA Journal of Numerical Analysis 38 (2018), no. 1, 495-517 (en).
S. Lang, Fundamentals of Differential Geometry, vol. 191, Springer, 1999.
I. Laptev, On space-time interest points, International journal of computer vision 64 (2005), 107-123.
P. Li and Q. Wang, Local log-euclidean covariance matrix (l2ecm) for image representation and its applications, Computer Vision - ECCV 2012 (Berlin, Heidelberg) (Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, eds.), Springer Berlin Heidelberg, 2012, pp. 469-482.
Z. Lin, Riemannian geometry of symmetric positive definite matrices via cholesky decomposition, SIAM Journal on Matrix Analysis and Applications 40 (2019), no. 4, 1353-1370.
H. Q. Minh and V. Murino, Covariances in Computer Vision and Machine Learning, Morgan & Claypool Publishers, 2017.
M. Moakher, A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices, SIAM Journal on Matrix Analysis and Applications 26 (2005), no. 3, 735-747, Publisher: Society for Industrial and Applied Mathematics.
M. Moakher and M. Zerai, The Riemannian Geometry of the Space of Positive-Definite Matrices and Its Application to the Regularization of Positive-Definite Matrix-Valued Data, Journal of Mathematical Imaging and Vision 40 (2011), 171-187.
F. Pedregosa, G. Varoquaux, A. Gramfort, B. Thirion V. Michel, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research 12 (2011), 2825-2830.
X. Pennec, Probabilities and Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements, 01 1999, pp. 194-198.
X. Pennec, Pierre Fillard, and Nicholas Ayache, A riemannian framework for tensor computing, International Journal of Computer Vision 66 (2006), no. 1, 41-66.
M. S. Ryoo and J. K. Aggarwal, UT-Interaction Dataset, ICPR contest on Semantic Description of Human Activities (SDHA), http://cvrc.ece.utexas.edu/SDHA2010/Human Interaction.html, 2010.
G. Yu, J. Yuan, and Z. Liu, Propagative hough voting for human activity recognition, Computer Vision - ECCV 2012 (Berlin, Heidelberg) (Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia Schmid, eds.), Springer Berlin Heidelberg, 2012, pp. 693-706.
X. Yuan, W. Huang, P. A. Absil, and K. A. Gallivan, A Riemannian Limited-Memory BFGS Algorithm for Computing the Matrix Geometric Mean, Procedia Computer Science 80 (2016), 2147-2157 (en).
X. Yuan, W. Huang, P-A. Absil, and K. A. Gallivan, Computing the matrix geometric mean: Riemannian versus Euclidean conditioning, implementation techniques, and a Riemannian BFGS method, Numerical Linear Algebra with Applications 27 (2020), no. 5, e2321.
T. Zhang, A Majorization-Minimization Algorithm for the Karcher Mean of Positive Definite Matrices, SIAM Journal on Matrix Analysis and Applications 38 (2013).