Embedded CMC Hypersurfaces on Hyperbolic Spaces
Keywords:
Principal curvatures, Hyperbolic spaces, Constant mean curvature, CMC, Embeddings (es)Downloads
1Central Connecticut State University, New Britain, United States. Email:perdomoosm@ccsu.edu
In this paper we will prove that for every integer n>1, there exists a real number H0<-1 such that every H∈ (-∞,H0) can be realized as the mean curvature of an embedding of Hn-1\times S1 in the n+1-dimensional space Hn+1. For n=2 we explicitly compute the value H0. For a general value n, we provide a function ξn defined on (-∞,-1), which is easy to compute numerically, such that, if ξn(H)>-2π, then, Hcan be realized as the mean curvature of an embedding of Hn-1\times S1 in the (n+1)-dimensional space Hn+1.
Key words: Principal curvatures, Hyperbolic spaces, Constant mean curvature, CMC, Embeddings.
2000 Mathematics Subject Classification: 58A10, 53C42.
En este artículo demostramos que para cada número entero n>1, existe un número real H0<-1, tal que todo H∈ (-∞,H0) puede obtenerse como la curvatura media de un encaje de la variedad Hn-1\times S1 en el espacio hiperbólico n+1 dimensional Hn+1. Para n=2 calcularemos explícitamente el valor H0. Para otros valores de n, daremos una función ξn definida en el intervalo (-∞,-1), la cual es fácil de calcular numéricamente, con la propiedad de que si ξn(H)>-2π, entonces el número H puede obtenerse como la curvatura media de un encaje de la variedad Hn-1\times S1 en el espacio hiperbólico n+1 dimensional Hn+1.
Palabras clave: Curvaturas principales, espacio hiperbólico, curvatura media constante, CMC, encajes.
Texto completo disponible en PDF
References
[1] M. Do Carmo and M. Dajczer, `Rotational Hypersurfaces in Spaces of Constant Curvature´, Trans. Amer. Math. Soc. 277, (1983), 685-709.
[2] O. Perdomo, `Embedded Constant Mean Curvature Hypersurfaces of Spheres´, ArXiv March 10, 2009. arXiv:0903.1321
[3] I. Sterling, `A Generalization of a Theorem of Delaunay to Rotational W-Hypersurfaces of σl-type in Hn+1 andSn+1´, Pacific J. Math 127, 1 (1987), 187-197.
[4] B. Wu, `On Complete Hypersurfaces with two Principal Distinct Principal Curvatures in a Hyperbolic Space´,Balkan J. Geom. Appl. 15, 2 (2010), 134-145.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv45n1a06,AUTHOR = {Perdomo, Oscar},
TITLE = {{Embedded CMC Hypersurfaces on Hyperbolic Spaces}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2011},
volume = {45},
number = {1},
pages = {81-96}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
Article abstract page views
Downloads
License
Copyright (c) 2011 Revista Colombiana de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.