Published

1991-01-01

A counterexample in the theory of linear singularly perturbed systems

Keywords:

Bounded solutions, system linear algebraic system, bounded functions, Lipschitz function (en)
Soluciones acotadas, sistema lineal, sistema algebráico, funciones acotadas, función de Lipschitz (es)

Authors

  • Raúl Naulin Universidad de Oriente

 In this note we compare the bounded solutions of the linear singularly perturbed system ε X' = A (t) x + f (t), with the solutions of the algebraic system A (t) x + f (t) = 0.  Here A and  f  are bounded C1 functions with bounded derivatives. We assume that the eigenvalues of A (t) satisfy | R e λ (t )| ≥ y > 0. It is known that for small ε, the following estimate is valid hasta ||kε (f) + A-1 f || ≤  εL || f ||1, where kε(f) denotes the bounded solution of ε X'  = A(t)x +f (t), || f || = sup R| f(t)|, || f ||1 : = || f || +|| ||  and L is a constant.

We prove that this estimate cannot be replaced by ||kε (f) + A-1 f || ≤  εL || f ||. Futhermore, if, instead of the condition that A be C1, we require that the function be bounded and Lipschitz continuous, we show that the same estimate, ||kε (f) + A-1 || ≤  εL || f ||1, can be obtained.

En esta nota se comparan las soluciones acotadas del sistema lineal singularmente perturbado ε X' = A (t) x + f (t), con las soluciones del sistema algebráico A (t) x + f (t) = 0. Aquí  A y f  son funciones acotadas de clase C1, con derivadas acotadas. Suponemos además que los valores propios de A (t) satisfacen la condición | R e λ (t)| ≥ y > 0. Es sabido que para ϵ C1 y ε suficientemente pequeños vale la siguiente estimación: ||kε (f) + A-1 || ≤  εL || f ||1, donde kε (f) denota la única solución acotada de ε X'  = A(t)x +f (t), || f || = sup R| f(t)|, || f ||1 : = || f || +|| || y L es una constante que no depende de f ni de ε.  Probaremos que esta estimación no puede ser extendida hasta ||kε (f) + A-1 f || ≤  εL || f ||. Además, si en lugar de exigir que A sea de clase C1 pedimos que A sea una función de Lipschitz acotada, entonces sigue siendo válida la estimación ||kε (f) + A-1 || ≤  εL || f ||1.

How to Cite

APA

Naulin, R. (1991). A counterexample in the theory of linear singularly perturbed systems. Revista Colombiana de Matemáticas, 25(1-4), 95–102. https://revistas.unal.edu.co/index.php/recolma/article/view/33395

ACM

[1]
Naulin, R. 1991. A counterexample in the theory of linear singularly perturbed systems. Revista Colombiana de Matemáticas. 25, 1-4 (Jan. 1991), 95–102.

ACS

(1)
Naulin, R. A counterexample in the theory of linear singularly perturbed systems. rev.colomb.mat 1991, 25, 95-102.

ABNT

NAULIN, R. A counterexample in the theory of linear singularly perturbed systems. Revista Colombiana de Matemáticas, [S. l.], v. 25, n. 1-4, p. 95–102, 1991. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/33395. Acesso em: 22 jan. 2025.

Chicago

Naulin, Raúl. 1991. “A counterexample in the theory of linear singularly perturbed systems”. Revista Colombiana De Matemáticas 25 (1-4):95-102. https://revistas.unal.edu.co/index.php/recolma/article/view/33395.

Harvard

Naulin, R. (1991) “A counterexample in the theory of linear singularly perturbed systems”, Revista Colombiana de Matemáticas, 25(1-4), pp. 95–102. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/33395 (Accessed: 22 January 2025).

IEEE

[1]
R. Naulin, “A counterexample in the theory of linear singularly perturbed systems”, rev.colomb.mat, vol. 25, no. 1-4, pp. 95–102, Jan. 1991.

MLA

Naulin, R. “A counterexample in the theory of linear singularly perturbed systems”. Revista Colombiana de Matemáticas, vol. 25, no. 1-4, Jan. 1991, pp. 95-102, https://revistas.unal.edu.co/index.php/recolma/article/view/33395.

Turabian

Naulin, Raúl. “A counterexample in the theory of linear singularly perturbed systems”. Revista Colombiana de Matemáticas 25, no. 1-4 (January 1, 1991): 95–102. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/33395.

Vancouver

1.
Naulin R. A counterexample in the theory of linear singularly perturbed systems. rev.colomb.mat [Internet]. 1991 Jan. 1 [cited 2025 Jan. 22];25(1-4):95-102. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/33395

Download Citation

Article abstract page views

175

Downloads

Download data is not yet available.