Published
Relajamiento multiplicativo con respecto a la métrica de Thompson
Multiplicative Relaxation with respect to Thompson's Metric
DOI:
https://doi.org/10.15446/recolma.v48n2.54126Keywords:
Metrica de Thompson, Aplicación mixta monotona, Pun tos fíjos, Contracción, Relajación (es)Thompson metric, Mixed monotone mappings, Fixed points, Contraction, Relaxation (en)
Downloads
puede ser aplicado a tipos especiales de ecuaciones integrales, por ejemplo.
function spaces have a contractive multiplicative relaxation with respect to
Thompson's metric. The corresponding xed point theorem can be applied to
special types of integral equations, for example.
1Karlsruhe Institute of Technology, Karlsruhe, Germany. Email: gerd.herzog2@kit.edu
We give a condition so that certain mixed monotone mappings on function spaces have a contractive multiplicative relaxation with respect to Thompson's metric. The corresponding fixed point theorem can be applied to special types of integral equations, for example.
Key words: Thompson metric, Mixed monotone mappings, Fixed points, Contraction, Relaxation.
2000 Mathematics Subject Classification: 47H10, 47H07.
Damos una condición para que ciertas aplicaciones monótonas mixtas sobre espacios de funciones tengan una relajación multiplicativa con respecto a las métricas de Thompson. El correspondiente teorema de punto fijo puede ser aplicado a tipos especiales de ecuaciones integrales, por ejemplo.
Palabras clave: Metrica de Thompson, aplicación mixta monotona, puntos fijos, contracción, relajación.
Texto completo disponible en PDF
References
[1] V. Berinde, Iterative Approximation of Fixed Points, Springer, 2007.
[2] Y. Z. Chen, 'Thompson's Metric and Mixed Monotone Operators', J. Math. Anal. Appl. 177, (1993), 31-37.
[3] D. Guo, 'Fixed Points of Mixed Monotone Operators With Applications', Appl. Anal. 31, (1988), 215-224.
[4] D. Guo, Y. J. Cho, and J. Zhu, Partial Ordering Methods in Nonlinear Problems, Nova Science Publishers, 2004.
[5] C. Y. Huang, 'Fixed Point Theorems for a Class of Positive Mixed Monotone Operators', Math. Nachr. 285, (2012), 659-669.
[6] D. H. Hyers, G. Isac, and T. M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific, 1997.
[7] M. D. Rus, The Method of Monotone Iterations for Mixed Monotone Operators, Ph.D. Thesis Summary, Babes-Bolyai University, Romania, 2010.
[8] A. Thompson, 'On Certain Contraction Mappings in a Partially Ordered Vector Space', Proc. Am. Math. Soc. 14, (1963), 438-443.
Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:
@ARTICLE{RCMv48n2a05,
AUTHOR = {Herzog, Gerd},
TITLE = {{Multiplicative Relaxation with respect to Thompson's Metric}},
JOURNAL = {Revista Colombiana de Matemáticas},
YEAR = {2014},
volume = {48},
number = {2},
pages = {211--217}
}
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2014 Revista Colombiana de Matemáticas
This work is licensed under a Creative Commons Attribution 4.0 International License.