Published

2016-07-01

Local unitary representations of the braid group and their applications to quantum computing

DOI:

https://doi.org/10.15446/recolma.v50n2.62211

Keywords:

topological quantum computation, braid group representations, localizations, quantum algebra (en)

Downloads

Authors

  • Colleen Delaney University of California
  • Eric C. Rowell Texas A&M University
  • Zhenghan Wang University of California

We provide an elementary introduction to topological quantum computation based on the Jones representation of the braid group. We first cover the Burau representation and Alexander polynomial. Then we discuss the Jones representation and Jones polynomial and their application to anyonic quantum computation. Finally we outline the approximation of the Jones polynomial by a quantum computer and explicit localizations of braid group representations.

DOI: https://doi.org/10.15446/recolma.v50n2.62211

Local unitary representations of the braid group and their applications to quantum computing

Colleen Delaney1, Eric C. Rowell2, Zhenghan Wang1, 3

1 University of California Santa Barbara, Santa Barbara, CA, U.S.A. cdelaney@math.ucsb.edu
2 Texas A&M University, College Station, TX, U.S.A. rowell@math.tamu.edu
3 Microsoft Station Q, Santa Barbara, CA, U.S.A. zhenghwa@microsoft.com


Abstract

We provide an elementary introduction to topological quantum computation based on the Jones representation of the braid group. We first cover the Burau representation and Alexander polynomial. Then we discuss the Jones representation and Jones polynomial and their application to anyonic quantum computation. Finally we outline the approximation of the Jones polynomial by a quantum computer and explicit localizations of braid group representations.

Keywords: topological quantum computation, braid group representations, localizations, quantum algebra.


Mathematics Subject Classification: 81P86, 20F36.


Texto completo disponible en PDF


References

[1] D. Aharonov, V. Jones, and Z. Landau, A polynomial quantum algorithm for approximating the Jones polynomial, Algorithmica 5 (2009), no. 3, 395-421.

[2] S. Bigelow, The Burau representation is not faithful for n = 5, Geometry & Topology 3 (1999), 397-404, arXiv:math/9904100v2.

[3] M. Brannan and B. Collins, Dual bases in Temperley-Lieb algebras, quantum groups, and a question of Jones, (2016), arXiv:1608.03885v2 [math.QA].

[4] J. Conway and A. Jones, Trigonometric Diophantine equations (on vanishing sums of roots of unity), Acta Arithmetica 30 (1976), no. 3, 229-240.

[5] M. Epple, Orbits of asteroids, a braid, and the first link invariant, Math. Intelligencer 20 (1998), no. 1, 45-52.

[6] J. Franko, E. C. Rowell, and Z. Wang, Extraspecial 2-groups and images of braid group representations, J. Knot Theory Ramifications 15 (2006), no. 4, 1-15.

[7] M. H. Freedman, A. Kitaev, and Z. Wang, Simulation of topological field theories by quantum computers, Comm. Math. Phys. 227 (2002), no. 3, 587-603.

[8] M. H. Freedman, M. J. Larsen, and Z. Wang, A modular functor which is universal for quantum computation, Comm. Math. Phys. 227 (2002), no. 3, 605-622.

[9] M.H. Freedman, M. J. Larsen, and Z. Wang, The two-eigenvalue problem and density of Jones representation of braid group, Comm. Math. Phys. 228 (2002), no. 1, 177-199.

[10] W. Fulton and J.Harris, Representation theory, a first course, Springer, New York, 1991.

[11] V.F.R. Jones, Braid groups, Hecke algebras and type II1 factors, Geometric methods in operator algebras 123 (1983), 242-273.

[12] V.F.R. Jones, Hecke-algebra representations of braid groups and link polynomials, Ann. Math. 126 (1987), 335-288.

[13] S.P. Jordan and P.W. Shor, Estimating Jones polynomials is a complete problem for one clean qubit, Quantum Information and Computation 8 (2008), no. 8, 681-714.

[14] V. Kliuchnikov, A. Bocharov, and K. M. Svore., Asymptotically optimal topological quantum compiling, Physical Review Letters 112 (2014), no. 140504, 335-288.

[15] G. Kuperberg, How hard is it to approximate the Jones polynomial?, (2009), arXiv:0908.0512v2 [quant-ph].

[16] M.J. Larsen and E.C. Rowell, An algebra-level version of a link-polynomial identity of Lickorish, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 3, 623-638.

[17] M.J. Larsen, E.C. Rowell, and Z. Wang, The N-eigenvalue problem and two applications, Int. Math. Res. Not. 2005 (2005), no. 64, 3987-4018.

[18] D. Naidu and E.C. Rowell, A finiteness property for braided fusion categories, Algebr. Represent. Theory 15 (2011), no. 5, 837-855.

[19] E. C. Rowell, R. Stong, and Z. Wang, On classification of modular tensor categories, Comm. Math. Phys. 292 (2009), no. 2, 343-389.

[20] E. C. Rowell and Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012), no. 3, 595-615, arXiv:1009.0241v2 [math.RT].

[21] E.C. Rowell, Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010), no. 1, 165-175.

[22] D.L. Vertigan, On the computational complexity of Tutte, Jones, Homfly and Kauffman invariants, Dissertation, University Of Oxford, 1991.

[23] Z. Wang, Topological quantum computation, American Mathematical Society, Providence (2008), http://www.math.ucsb.edu/zhenghwa/data/course/cbms.pdf.

Recibido: julio de 2016 Aceptado: noviembre de 2016

How to Cite

APA

Delaney, C., Rowell, E. C. and Wang, Z. (2016). Local unitary representations of the braid group and their applications to quantum computing. Revista Colombiana de Matemáticas, 50(2), 211–276. https://doi.org/10.15446/recolma.v50n2.62211

ACM

[1]
Delaney, C., Rowell, E.C. and Wang, Z. 2016. Local unitary representations of the braid group and their applications to quantum computing. Revista Colombiana de Matemáticas. 50, 2 (Jul. 2016), 211–276. DOI:https://doi.org/10.15446/recolma.v50n2.62211.

ACS

(1)
Delaney, C.; Rowell, E. C.; Wang, Z. Local unitary representations of the braid group and their applications to quantum computing. rev.colomb.mat 2016, 50, 211-276.

ABNT

DELANEY, C.; ROWELL, E. C.; WANG, Z. Local unitary representations of the braid group and their applications to quantum computing. Revista Colombiana de Matemáticas, [S. l.], v. 50, n. 2, p. 211–276, 2016. DOI: 10.15446/recolma.v50n2.62211. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/62211. Acesso em: 22 jan. 2025.

Chicago

Delaney, Colleen, Eric C. Rowell, and Zhenghan Wang. 2016. “Local unitary representations of the braid group and their applications to quantum computing”. Revista Colombiana De Matemáticas 50 (2):211-76. https://doi.org/10.15446/recolma.v50n2.62211.

Harvard

Delaney, C., Rowell, E. C. and Wang, Z. (2016) “Local unitary representations of the braid group and their applications to quantum computing”, Revista Colombiana de Matemáticas, 50(2), pp. 211–276. doi: 10.15446/recolma.v50n2.62211.

IEEE

[1]
C. Delaney, E. C. Rowell, and Z. Wang, “Local unitary representations of the braid group and their applications to quantum computing”, rev.colomb.mat, vol. 50, no. 2, pp. 211–276, Jul. 2016.

MLA

Delaney, C., E. C. Rowell, and Z. Wang. “Local unitary representations of the braid group and their applications to quantum computing”. Revista Colombiana de Matemáticas, vol. 50, no. 2, July 2016, pp. 211-76, doi:10.15446/recolma.v50n2.62211.

Turabian

Delaney, Colleen, Eric C. Rowell, and Zhenghan Wang. “Local unitary representations of the braid group and their applications to quantum computing”. Revista Colombiana de Matemáticas 50, no. 2 (July 1, 2016): 211–276. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/62211.

Vancouver

1.
Delaney C, Rowell EC, Wang Z. Local unitary representations of the braid group and their applications to quantum computing. rev.colomb.mat [Internet]. 2016 Jul. 1 [cited 2025 Jan. 22];50(2):211-76. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/62211

Download Citation

CrossRef Cited-by

CrossRef citations7

1. Li-Wei Yu. (2018). Local unitary representation of braids and N-qubit entanglements. Quantum Information Processing, 17(3) https://doi.org/10.1007/s11128-018-1811-3.

2. Emil Génetay Johansen, Tapio Simula. (2021). Fibonacci Anyons Versus Majorana Fermions: A Monte Carlo Approach to the Compilation of Braid Circuits in SU(2)k Anyon Models. PRX Quantum, 2(1) https://doi.org/10.1103/PRXQuantum.2.010334.

3. Eric Rowell, Zhenghan Wang. (2018). Mathematics of topological quantum computing. Bulletin of the American Mathematical Society, 55(2), p.183. https://doi.org/10.1090/bull/1605.

4. Shawn X Cui, Kevin T Tian, Jennifer F Vasquez, Zhenghan Wang, Helen M Wong. (2019). The search for leakage-free entangling Fibonacci braiding gates. Journal of Physics A: Mathematical and Theoretical, 52(45), p.455301. https://doi.org/10.1088/1751-8121/ab488e.

5. Muhammad Ilyas, Shawn Cui, Marek Perkowski. (2022). Ternary logic design in topological quantum computing. Journal of Physics A: Mathematical and Theoretical, 55(30), p.305302. https://doi.org/10.1088/1751-8121/ac7b55.

6. Zhi-Cheng Yang, Konstantinos Meichanetzidis, Stefanos Kourtis, Claudio Chamon. (2019). Scrambling via braiding of nonabelions. Physical Review B, 99(4) https://doi.org/10.1103/PhysRevB.99.045132.

7. Sergio Albeverio, Slavik Rabanovich. (2019). On a class of unitary representations of the braid groups B3 and B4. Bulletin des Sciences Mathématiques, 153, p.35. https://doi.org/10.1016/j.bulsci.2019.01.014.

Dimensions

PlumX

Article abstract page views

411

Downloads

Download data is not yet available.