Published

2016-07-01

Solutions of the hexagon equation for abelian anyons

DOI:

https://doi.org/10.15446/recolma.v50n2.62213

Keywords:

Anyons, pointed fusion categories, modular categories, quadratic forms (en)

Downloads

Authors

  • César Galindo Universidad de los Andes
  • Nicolás Jaramillo Universidad de los Andes

We address the problem of determining the obstruction to existence of solutions of the hexagon equation for abelian fusion rules and the classication of prime abelian anyons.

DOI: https://doi.org/10.15446/recolma.v50n2.62213

Solutions of the hexagon equation for abelian anyons

César Galindo, Nicolás Jaramillo1

1 Universidad de los Andes, Bogotá, Colombia. cn.galindo1116@uniandes.edu.co, n.jaramillo1163@uniandes.edu.co


Abstract

We address the problem of determining the obstruction to existence of solutions of the hexagon equation for abelian fusion rules and the classification of prime abelian anyons.

Keywords: Anyons, pointed fusion categories, modular categories, quadratic forms.


Mathematics Subject Classification: 16T05, 18D10.


Texto completo disponible en PDF


References

[1] Andrei Bernevig and Titus Neupert, Topological superconductors and category theory, arXiv preprint arXiv:1506.05805 (2015).

[2] Parsa Hassan Bonderson, Non-abelian anyons and interferometry, Ph.D. thesis, California Institute of Technology, 2007.

[3] D Bulacu, S Caenepeel, and B Torrecillas, The braided monoidal structures on the category of vector spaces graded by the klein group, Edinburgh Mathematical Society. Proceedings 54 (2011), no. 3, 613-641.

[4] Shawn X Cui, César Galindo, Julia Yael Plavnik, and Zhenghan Wang, On gauging symmetry of modular categories, arXiv preprint arXiv:1510.03475 (2015).

[5] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik, On braided fusion categories. I, Selecta Math. (N.S.) 16 (2010), no. 1, 1-119. MR 2609644

[6] Alan H. Durfee, Bilinear and quadratic forms on torsion modules, Advances in Math. 25 (1977), no. 2, 133-164. MR 0480333

[7] Samuel Eilenberg and Saunders Mac Lane, On the groups of h(π, n). I, Ann. of Math. (2) 58 (1953), 55-106. MR 0056295

[8] Samuel Eilenberg and Saunders Mac Lane, On the groups h(π, n). II. Methods of computation, Ann. of Math. (2) 60 (1954), 49-139. MR 0065162

[9] Pavel Etingof, Dmitri Nikshych, and Viktor Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581-642. MR 2183279

[10] Michael Freedman, Alexei Kitaev, Michael Larsen, and Zhenghan Wang, Topological quantum computation, Bulletin of the American Mathematical Society 40 (2003), no. 1, 31-38.

[11] Hua-Lin Huang, Gongxiang Liu, and Yu Ye, The braided monoidal structures on a class of linear gr-categories, Algebras and Representation Theory 17 (2014), no. 4, 1249-1265.

[12] A Yu Kitaev, Fault-tolerant quantum computation by anyons, Annals of Physics 303 (2003), no. 1, 2-30.

[13] Alexei Kitaev, Anyons in an exactly solved model and beyond, Annals of Physics 321 (2006), no. 1, 2-111.

[14] Gongxiang Liu and Siu-Hung Ng, On total Frobenius-Schur indicators, Recent advances in representation theory, quantum groups, algebraic geometry, and related topics, Contemp. Math., vol. 623, Amer. Math. Soc., Providence, RI, 2014, pp. 193-213. MR 3288628

[15] Geoffrey Mason and Siu-Hung Ng, Group cohomology and gauge equivalence of some twisted quantum doubles, Trans. Amer. Math. Soc. 353 (2001), no. 9, 3465-3509 (electronic). MR 1837244

[16] Rick Miranda and David R. Morrison, The number of embeddings of integral quadratic forms. II, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 1, 29-32. MR 839800

[17] Michael Müger, On the structure of modular categories, Proc. London Math. Soc. (3) 87 (2003), no. 2, 291-308. MR 1990929

[18] Jiannis K. Pachos, Introduction to topological quantum computation, Cambridge University Press, Cambridge, 2012. MR 3157248

[19] Frank Quinn, Group categories and their field theories, Proceedings of the Kirbyfest (Berkeley, CA, 1998), Geom. Topol. Monogr., vol. 2, Geom. Topol. Publ., Coventry, 1999, pp. 407-453 (electronic). MR 1734419

[20] Daisuke Tambara and Shigeru Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, Journal of Algebra 209 (1998), no. 2, 692-707.

[21] C. T. C. Wall, Quadratic forms on finite groups, and related topics, Topology 2 (1963), 281-298. MR 0156890

[22] Zhenghan Wang, Topological quantum computation, CBMS Regional Conference Series in Mathematics, vol. 112, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2010. MR 2640343.

Recibido: julio de 2016 Aceptado: noviembre de 2016

How to Cite

APA

Galindo, C. and Jaramillo, N. (2016). Solutions of the hexagon equation for abelian anyons. Revista Colombiana de Matemáticas, 50(2), 277–298. https://doi.org/10.15446/recolma.v50n2.62213

ACM

[1]
Galindo, C. and Jaramillo, N. 2016. Solutions of the hexagon equation for abelian anyons. Revista Colombiana de Matemáticas. 50, 2 (Jul. 2016), 277–298. DOI:https://doi.org/10.15446/recolma.v50n2.62213.

ACS

(1)
Galindo, C.; Jaramillo, N. Solutions of the hexagon equation for abelian anyons. rev.colomb.mat 2016, 50, 277-298.

ABNT

GALINDO, C.; JARAMILLO, N. Solutions of the hexagon equation for abelian anyons. Revista Colombiana de Matemáticas, [S. l.], v. 50, n. 2, p. 277–298, 2016. DOI: 10.15446/recolma.v50n2.62213. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/62213. Acesso em: 22 jan. 2025.

Chicago

Galindo, César, and Nicolás Jaramillo. 2016. “Solutions of the hexagon equation for abelian anyons”. Revista Colombiana De Matemáticas 50 (2):277-98. https://doi.org/10.15446/recolma.v50n2.62213.

Harvard

Galindo, C. and Jaramillo, N. (2016) “Solutions of the hexagon equation for abelian anyons”, Revista Colombiana de Matemáticas, 50(2), pp. 277–298. doi: 10.15446/recolma.v50n2.62213.

IEEE

[1]
C. Galindo and N. Jaramillo, “Solutions of the hexagon equation for abelian anyons”, rev.colomb.mat, vol. 50, no. 2, pp. 277–298, Jul. 2016.

MLA

Galindo, C., and N. Jaramillo. “Solutions of the hexagon equation for abelian anyons”. Revista Colombiana de Matemáticas, vol. 50, no. 2, July 2016, pp. 277-98, doi:10.15446/recolma.v50n2.62213.

Turabian

Galindo, César, and Nicolás Jaramillo. “Solutions of the hexagon equation for abelian anyons”. Revista Colombiana de Matemáticas 50, no. 2 (July 1, 2016): 277–298. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/62213.

Vancouver

1.
Galindo C, Jaramillo N. Solutions of the hexagon equation for abelian anyons. rev.colomb.mat [Internet]. 2016 Jul. 1 [cited 2025 Jan. 22];50(2):277-98. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/62213

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Jeongwan Haah. (2021). Classification of translation invariant topological Pauli stabilizer codes for prime dimensional qudits on two-dimensional lattices. Journal of Mathematical Physics, 62(1) https://doi.org/10.1063/5.0021068.

2. Liang Wang, Zhenghan Wang. (2020). In and around abelian anyon models * . Journal of Physics A: Mathematical and Theoretical, 53(50), p.505203. https://doi.org/10.1088/1751-8121/abc6c0.

3. César GALINDO. (2022). Trivializing group actions on braided crossed tensor categories and graded braided tensor categories. Journal of the Mathematical Society of Japan, 74(3) https://doi.org/10.2969/jmsj/85768576.

4. Shawn Xingshan Cui, Modjtaba Shokrian Zini, Zhenghan Wang. (2019). On generalized symmetries and structure of modular categories. Science China Mathematics, 62(3), p.417. https://doi.org/10.1007/s11425-018-9455-5.

5. Ori J. Ganor, Hao-Yu Sun, Nesty R. Torres-Chicon. (2021). Double-Janus linear sigma models and generalized reciprocity for Gauss sums. Journal of High Energy Physics, 2021(5) https://doi.org/10.1007/JHEP05(2021)227.

Dimensions

PlumX

Article abstract page views

317

Downloads

Download data is not yet available.