Published

2004-01-01

Weighted locally convex spaces of measurable functions

Keywords:

Locally convex spaces, Weighted spaces, Measurable functions, Measure space, 2000 Mathematics Subject Classification. Primary: 46A04. Secondary: 46E30. (en)

Downloads

Authors

  • University of Lagos, Nigeria

Abstract. In this paper, we make a study of weighted locally convex spaces of measurable functions parallel to the studies of weighted locally convex spaces of continuous functions which has been a subject of intense research for decades. With Lp, 1 ≤ p < ∞, spaces as our motivation, the completeness and inductive limits of those spaces are studied including their relationship with the weighted spaces of continuous functions leading to new results and generalizations of results true for Lp spaces.

References

K. D. Bierstedt, R. Meise & W . H. Summers A projective description of weighted inductive limits, Trans. Amer. Math. Soc. 2 7 2 (1982)107-160.

K. D. Bierstedt, An introduction to locally convex inductive limits Functional Analysis and its Applications, Papers from the International School held in Nice, August 25-September 20, 1986, pages 35-133, Eds. H. Hogbe-Nlend. ICPAM Lecture Notes. World Scientific Publishing co., Singapore.

J. O. Olaleru, On weighted spaces without a fundamental sequence of bounded sets, International Journal of Mathematics and Mathematical Sciences, 30 no 8 (2002), 449-457.

J. O. Olaleru, Semiconvex weighted spaces of measurable functions, ICTP, Italy, Preprint 2000.

P. P. Carreras & J. Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, 1987.

J. B. Prolla, Weighted spaces of vector valued continuous functions, Ann. Math. Pure. Appl., 4 no. 89 (1971), 145-158.

M. M. Rao, Measure Theory and Integration, John Wiley and Sons, 1987.

W. Rudin, Real and Complex Analysis, McGraw-Hill Book Company, 1974.

W. H. Summers, A representation theorem for biequicontinuous completed tensor products of weighted spaces, Trans. Amer. Math. Soc. 146 (1969), 121-131.

How to Cite

APA

Johnson O. (2004). Weighted locally convex spaces of measurable functions. Revista Colombiana de Matemáticas, 38(1), 7–15. https://revistas.unal.edu.co/index.php/recolma/article/view/94295

ACM

[1]
Johnson O. 2004. Weighted locally convex spaces of measurable functions. Revista Colombiana de Matemáticas. 38, 1 (Jan. 2004), 7–15.

ACS

(1)
Johnson O. Weighted locally convex spaces of measurable functions. rev.colomb.mat 2004, 38, 7-15.

ABNT

JOHNSON O. Weighted locally convex spaces of measurable functions. Revista Colombiana de Matemáticas, [S. l.], v. 38, n. 1, p. 7–15, 2004. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/94295. Acesso em: 22 jan. 2025.

Chicago

Johnson O. 2004. “Weighted locally convex spaces of measurable functions”. Revista Colombiana De Matemáticas 38 (1):7-15. https://revistas.unal.edu.co/index.php/recolma/article/view/94295.

Harvard

Johnson O. (2004) “Weighted locally convex spaces of measurable functions”, Revista Colombiana de Matemáticas, 38(1), pp. 7–15. Available at: https://revistas.unal.edu.co/index.php/recolma/article/view/94295 (Accessed: 22 January 2025).

IEEE

[1]
Johnson O., “Weighted locally convex spaces of measurable functions”, rev.colomb.mat, vol. 38, no. 1, pp. 7–15, Jan. 2004.

MLA

Johnson O. “Weighted locally convex spaces of measurable functions”. Revista Colombiana de Matemáticas, vol. 38, no. 1, Jan. 2004, pp. 7-15, https://revistas.unal.edu.co/index.php/recolma/article/view/94295.

Turabian

Johnson O. “Weighted locally convex spaces of measurable functions”. Revista Colombiana de Matemáticas 38, no. 1 (January 1, 2004): 7–15. Accessed January 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/94295.

Vancouver

1.
Johnson O. Weighted locally convex spaces of measurable functions. rev.colomb.mat [Internet]. 2004 Jan. 1 [cited 2025 Jan. 22];38(1):7-15. Available from: https://revistas.unal.edu.co/index.php/recolma/article/view/94295

Download Citation

Article abstract page views

19

Downloads

Download data is not yet available.