Sobre la derivada Schwarziana de aplicaciones conformes hiperbólicamente convexas
Palabras clave:
Hiperbólicamente funciones convexas, funciones univalentes derivados, Schwarzian (es)Hyperbolically convex functions, Univalent functions, Schwarzian derivative (en)
Descargas
Se dice que una transformaci6n conforme f del disco unidad 𝔻 del plano complejo en sí mismo es hiperbólicamente convexa si el segmento de recta hiperbólica entre cualquier par de puntos de f (𝔻) esta también contenido en f (𝔻). En este trabajo probamos que la derivada Schwarziana de estas funciones, Sf = (f" / f')' - (1/2) (f" / f')2, satisface la desigualdad (1 - |z|2|Sf|(z)| < 2.54.
A conformal mapping f of the unit disk 𝔻 into itself is called hyperbolically convex if the non-euclidean segment between any two points of f (𝔻) also belongs to f (𝔻). In this paper we prove that the Schwarz ian derivative for these functions Sf = (f" / f')' - (1/2) (f" / f')2 verifies the inequality (1 - |z|2|Sf|(z)| < 2.54.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2001 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.