Publicado
A new proof of the Unique Factorization of Z 1 + -d 2 for d = 3, 7, 11, 19, 43, 67, 163
DOI:
https://doi.org/10.15446/recolma.v50n2.62206Palabras clave:
Unique factorization domain, prime, irreducible (en)Descargas
In this paper, we give an elementary proof of the fact that the rings are unique factorization domains for the values d = 3, 7, 11, 19, 43, 67, 163. While the result in itself is well known, our proof is new and completely elementary and uses neither the Minkowski convex body theorem, nor the Dedekind and Hasse theorems. Furthermore, it does not use either the theory of algebraic integers, or the theory of Noetherian rings. It only uses basic notions from the theory of commutative rings.
DOI: https://doi.org/10.15446/recolma.v50n2.62206
A new proof of the Unique Factorization of for d = 3, 7, 11, 19, 43, 67, 163
Una nueva demostración de la factorización única para d = 3, 7, 11, 19, 43, 67, 163
Victor J. Ramirez V.1
1 Universidad Simon Bolivar, Caracas, Venezuela. ramirezv@usb.ve
Abstract
In this paper, we give an elementary proof of the fact that the rings are unique factorization domains for the values d = 3, 7, 11, 19, 43, 67, 163. While the result in itself is well known, our proof is new and completely elementary and uses neither the Minkowski convex body theorem, nor the Dedekind and Hasse theorems. Furthermore, it does not use either the theory of algebraic integers, or the theory of Noetherian rings. It only uses basic notions from the theory of commutative rings.
Keywords: Unique factorization domain, prime, irreducible.
Mathematics Subject Classification: 11R29, 13F15.
Resumen
En este artículo, damos una demostración elemental de que los anillos son dominios de factorización única para los valores d = 3, 7, 11, 19, 43, 67, 163. Si bien este resultado es conocido, nuestra prueba es nueva y completamente elemental, y no hace uso del teorema del cuerpo convexo de Minkowski, ni del teorema de Dedekind y Hasse. Además, no utiliza la teoría de los enteros algebraicos, ni la teoría de los anillos noetherianos. Sólo utiliza nociones básicas de la teoría de los anillos conmutativos.
Palabras claves: Dominio de factorización única, primo, irreducible.
Texto completo disponible en PDF
References
[1] S. Alaca and K. S. Williams, Introductory algebraic number theory, Cambridge University Press, 2004.
[2] H. Cohn, Advanced number theory, Dover, New York, 1980.
[3] A. Oneto and V. Ramirez, Dominios principales no euclidianos, Divul.Mat. 1 (1993), 55-65.
[4] H. Pollard, The theory of algebraic numbers, Carus Monograph 9, MAA, Wiley, New York, 1975.
Recibido: enero de 2016 Aceptado: marzo de 2016
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Víctor Julio RAMÍREZ VIÑAS. (2023). NECESSARY AND SUFFICIENT CONDITIONS FOR UNIQUE FACTORIZATION IN ℤ[(-1 + √d)/2]. Kyushu Journal of Mathematics, 77(1), p.121. https://doi.org/10.2206/kyushujm.77.121.
2. Víctor J Ramírez. (2023). Prime producing quadratic polynomials associated with real quadratic fields of class-number one. Periodica Mathematica Hungarica, 86(2), p.495. https://doi.org/10.1007/s10998-022-00487-1.
3. Víctor Julio Ramírez Viñas. (2019). A simple criterion for the class number of a quadratic number field to be one. International Journal of Number Theory, 15(09), p.1857. https://doi.org/10.1142/S1793042119501033.
4. Paul Pollack, Noah Snyder. (2021). A Quick Route to Unique Factorization in Quadratic Orders. The American Mathematical Monthly, 128(6), p.554. https://doi.org/10.1080/00029890.2021.1898875.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2016 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.