Publicado
Quantum Information and the Representation Theory of the Symmetric Group
DOI:
https://doi.org/10.15446/recolma.v50n2.62210Palabras clave:
Representation Theory, Quantum Information Theory, Schur-Weyl duality, Quantum Shannon theorem, Entanglement concentration (en)Descargas
A number of important results in quantum information theory can be connected quite elegantly to the representation theory of the symmetric group through a quantum analogue of the classical information-theoretic "method of types" that arises naturally from the Schur-Weyl duality. We will give a brief introduction to this connection and brie y discuss some of the results that follow from it, such as quantum source compression rates, entanglement concentration rates, quantum entropy inequalities, and the admissisble spectra of partial density matrices from pure, multipartite entangled states.
DOI: https://doi.org/10.15446/recolma.v50n2.62210
Quantum Information and the Representation Theory of the Symmetric Group
Información Cuántica y la Teoría de Representación del Grupo Simétrico
Alonso Botero
Universidad de los Andes, Bogotá, Colombia. abotero@uniandes.edu.co
Abstract
A number of important results in quantum information theory can be connected quite elegantly to the representation theory of the symmetric group through a quantum analogue of the classical information-theoretic "method of types" that arises naturally from the Schur-Weyl duality. We will give a brief introduction to this connection and briefly discuss some of the results that follow from it, such as quantum source compression rates, entanglement concentration rates, quantum entropy inequalities, and the admissisble spectra of partial density matrices from pure, multipartite entangled states.
Keywords: Representation Theory, Quantum Information Theory, Schur-Weyl duality, Quantum Shannon theorem, Entanglement concentration.
Resumen
Un gran número de resultados importantes en la teoría de la información cuántica se pueden conectar con la teoría de la representación del grupo simétrico, a través de un análogo cuántico del llamado método de tipos que emerge de manera natural de la dualidad de Schur-Weyl. En este artículo daremos una breve introducción a esta conexión y discutiremos algunos resultados que emergen de la misma, como son las tasas de compresión de a fuente cuántica, tasas de concentración de enredamiento, desigualdadades de la entropía cuántica, y condiciones sobre los espectros admisibles de matrices parciales de densidad provenientes de un estado cuántico puro multipartito.
Palabras claves: Teoría de la representación, Teoría de la información cuántica, dualidad de Schur-Weyl, Teorema de Shannon cuántico, Concentración de enredamiento.
Mathematics Subject Classification: 20G05, 94A15, 81P45, 60F10.
Texto completo disponible en PDF
References
[1] Robert Alicki, Slawomir Rudnicki, and Slawomir Sadowski, Symmetry properties of product states for the system of n-level atoms, Journal of Mathematical Physics 29 (1988), no. 5, 1158-1162.
[2] P. Bürgisser and Christian Ikenmeyer, The complexity of computing Kronecker coefficients, DMTCS Proceedings (2008), 357-368.
[3] Matthias Christandl, Aram W. Harrow, and Graeme Mitchison, Nonzero Kronecker Coefficients and What They Tell us about Spectra, Commun. Math. Phys. 270 (2007), no. 3, 575-585 (en).
[4] Matthias Christandl and Graeme Mitchison, The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group, Commun. Math. Phys. 261 (2005), no. 3, 789-797 (en).
[5] Matthias Christandl, Mehmet Burak Sahinoglu, and Michael Walter, Recoupling Coefficients and Quantum Entropies, arXiv:1210.0463 [math-ph, physics:quant-ph] (2012), arXiv: 1210.0463.
[6] Peter Dal Cin, Groups, Systems and Many-Body Physics, Springer Science & Business Media, April 2013 (en).
[7] T. M. Cover and Joy A. Thomas, Elements of information theory, 2nd ed ed., Wiley-Interscience, Hoboken, N.J, 2006.
[8] Imre Csiszar, The method of types, Information Theory, IEEE Transactions on 44 (1998), no. 6, 2505-2523.
[9] J. S. Frame, G. de B. Robinson, and R. M. Thrall, The hook graphs of the symmetric group, Canadian Journal of Mathematics 6 (1954), no. 0, 316-324 (en).
[10] William Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, Cambridge University Press, 1997 (en).
[11] William Fulton and Joe Harris, Representation Theory: A First Course, Springer Science & Business Media, December 2013 (en).
[12] Brian C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, May 2015 (en).
[13] Aram W. Harrow, Applications of coherent classical communication and the Schur transform to quantum information theory, arXiv:quantph/0512255 (2005), arXiv: quant-ph/0512255.
[14] Masahito Hayashi, Masato Koashi, Keiji Matsumoto, Fumiaki Morikoshi, and Andreas Winter, Error exponents for entanglement concentration, J. Phys. A: Math. Gen. 36 (2003), no. 2, 527 (en).
[15] Masahito Hayashi and Keiji Matsumoto, Quantum universal variable-length source coding, Phys. Rev. A 66 (2002), no. 2, 022311.
[16] James, The Representation Theory of the Symmetric Group, Cambridge University Press, March 2009 (en).
[17] M. Keyl and R. F. Werner, Estimating the spectrum of a density operator, Phys. Rev. A 64 (2001), no. 5, 052311.
[18] Alexander A. Klyachko, Quantum marginal problem and N-representability, Journal of Physics: Conference Series 36 (2006), 72-86.
[19] Allen Knutson and Terence Tao, Honeycombs and sums of Hermitian matrices, Notices Amer. Math. Soc 48 (2001), no. 2.
[20] Elliott H. Lieb and Mary Beth Ruskai, Proof of the strong subadditivity of quantum-mechanical entropy, Journal of Mathematical Physics 14 (1973), no. 12, 1938-1941.
[21] James D. Louck, Unitary Symmetry and Combinatorics, World Scientific, 2008 (en).
[22] David Mackay, Information Theory, Inference And Learning Algorithms, Cambridge University Press, April 2005 (en).
[23] Iman Marvian and Robert W. Spekkens, A Generalization of Schur-Weyl Duality with Applications in Quantum Estimation, Commun. Math. Phys. 331 (2014), no. 2, 431-475 (en).
[24] Keiji Matsumoto and Masahito Hayashi, Universal distortion-free entanglement concentration, Phys. Rev. A 75 (2007), no. 6, 062338.
[25] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, December 2010 (en).
[26] Sandu Popescu and Daniel Rohrlich, Thermodynamics and the measure of entanglement, Phys. Rev. A 56 (1997), no. 5, R3319-R3321.
[27] Mercedes H. Rosas, The Kronecker Product of Schur Functions Indexed by Two-Row Shapes or Hook Shapes, Journal of Algebraic Combinatorics 14 (2001), no. 2, 153-173 (en).
[28] Benjamin Schumacher, Quantum coding, Phys. Rev. A 51 (1995), no. 4, 2738-2747.
[29] Claude Elwood Shannon and Warren Weaver, The Mathematical Theory of Communication, University of Illinois Press, 1998 (en).
[30] S. R. S. Varadhan, Large Deviations and Applications, SIAM, 1984 (en).
Recibido: julio de 2016 Aceptado: noviembre de 2016
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Dmitry Grinko, Maris Ozols. (2024). Linear Programming with Unitary-Equivariant Constraints. Communications in Mathematical Physics, 405(12) https://doi.org/10.1007/s00220-024-05108-1.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Derechos de autor 2016 Revista Colombiana de Matemáticas
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.