Publicado

2019-12-11

On the importance of being primitive

DOI:

https://doi.org/10.15446/recolma.v53nsupl.84009

Palabras clave:

primitive ideals, Dixmier-Moeglin equivalence, prime spectrum (en)
Ideales primitivos, Equivalencia de Dixmier-Moeglin, espectro primo (es)

Descargas

Autores/as

  • Jason Bell University of Waterloo
We give a brief survey of primitivity in ring theory and in particular look at characterizations of primitive ideals in the prime spectrum for various classes of rings.
Hacemos un breve estudio de la primitividad en la teoría de anillos y, en particular, veremos caracterizaciones de ideales primitivos en el espectro primo para varias clases de anillos.

Referencias

G. Abrams, J. P. Bell, and K. M Rangaswamy, The Dixmier-Moeglin equivalence for Leavitt path algebras, Algebr. Represent. Theory 15 (2002), no. 3, 407-425.

M. Artin and J. T. Stafford, Noncommutative graded domains with quadratic growth, Invent. Math. 122 (1995), no. 2, 231-276.

Y. A. Bachturin, Identities in the universal envelopes of Lie algebras. Collection of articles dedicated to the memory of Hanna Neumann, IX, J. Austral. Math. Soc. 18 (1974), 10-21.

J. Bell, S. Launois, and B. Nolan, A strong Dixmier-Moeglin equivalence for quantum Schubert cells, J. Algebra 487 (2017), 269-293.

J. Bell, S. Launois, O. León Sánchez, and R. Moosa, Poisson algebras via model theory and differential-algebraic geometry, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 7, 2019-2049.

J. Bell, D. Rogalski, and S. J. Sierra, The Dixmier-Moeglin equivalence for twisted homogeneous coordinate rings, Israel J. Math. 180 (2010), 461-507.

J. Bell, O. León Sánchez, and R. Moosa, D-groups and the Dixmier-Moeglin equivalence, Algebra Number Theory 12 (2018), no. 2, 343-378.

J. P. Bell and D. Ghioca, Periodic subvarieties of semiabelian varieties and annihilators of irreducible representations, Adv. Math. 349 (2019), 459-487.

J. P. Bell and W. H. Leung, The Dixmier-Moeglin equivalence for co-commutative Hopf algebras of finite Gelfand-Kirillov dimension, Algebr. Represent. Theory 17 (2014), no. 6, 1843-1852.

J. P. Bell, X. Wang, and D. Yee, The Dixmier-Moeglin equivalence, Morita equivalence, and homeomorphism of spectra, J. Algebra 534 (2019), 228-244.

J. P. Bell, K. Wu, and S. Wu, The Dixmier-Moeglin equivalence for extensions of scalars and Ore extensions, Groups, rings, group rings, and Hopf algebras, 1{14, Contemp. Math., 688, Amer. Math. Soc., Providence, RI, 2017.

G. M. Bergman, A ring primitive on the right but not on the left, Proc. Amer. Math. Soc. 15 (1964), 473-475.

K. Brown, S. O'Hagan, J. Zhang, and G. Zhuang, Connected Hopf algebras and iterated Ore extensions, J. Pure Appl. Algebra 219 (2015), no. 6, 2405-2433.

K. A. Brown, The Nullstellensatz for certain group rings, J. London Math. Soc. 26 (1982), no. 3, 425-434.

K. A. Brown, P. A.A.B. Carvalho, and J. Matczuk, Simple modules and their essential extensions for skew polynomial rings, Preprint, available online at ArXiv:1705.06596.

K. A. Brown and P. Gilmartin, Hopf algebras under finiteness conditions, Palest. J. Math. 3 (2014), Special issue, 356-365.

K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser Verlag, Basel, 2002.

K. A. Brown and I. Gordon, Poisson orders, symplectic reflection algebras and representation theory, J. Reine Angew. Math. 559 (2003), 193-216.

K. Casteels, Quantum matrices by paths, Algebra Number Theory 8 (2014), no. 8, 1857-19129.

G. Cauchon, Effacement des dérivations et spectres premiers des algèbres quantiques, J. Algebra 260 (2003), no. 2, 476-518.

J. Dixmier, Idéaux primitifs dans les algèbres enveloppantes, J. Algebra 48 (1977), 96-112.

D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Graduate Texts in Mathematics, 150. Springer-Verlag, New York, 1995.

K. R. Goodearl and R. B. Warfield Jr., Primitivity in differential operator rings, Math. Z. 180 (1982), no. 4, 503-523.

K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative noetherian rings, Second edition. London Mathematical Society Student Texts, 61. Cambridge University Press, Cambridge, 2004.

K. R. Goodearl and S. Launois, The Dixmier-Moeglin equivalence and a Gelfand-Kirillov problem for Poisson polynomial algebras, Bull. Soc. Math. France 139 (2011), no. 1, 1-39.

K. R. Goodearl, S. Launois, and T. H. Lenagan, Torus-invariant prime ideals in quantum matrices, totally nonnegative cells and symplectic leaves, Math. Z. 269 (2011), no. 1-2, 29-45.

K. R. Goodearl and E. S. Letzter, The Dixmier-Moeglin equivalence in quantum coordinate rings and quantized Weyl algebras, Trans. Amer. Math. Soc. 352 (2000), no. 3, 1381-1403.

K. R. Goodearl and J. J. Zhang, Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two, J. Algebra 324 (2010), no. 11, 3131-3168.

R. S. Irving, Noetherian algebras and nullstellensatz, Séminaire d'Algèbre Paul Dubreil 31 me année (Paris, 1977-1978). Lecture Notes in Math., 740, Springer, Berlin (1979), 80-87.

R. S. Irving, Primitive ideals of certain Noetherian algebras, Math. Z. 169 (1979), no. 1, 77-92.

R. S. Irving, Primitive Noetherian algebras with big centers, Proc. Amer. Math. Soc. 129 (2001), no. 6, 1587-1593.

N. Jacobson, Structure theory for algebraic algebras of bounded degree, Ann. Math. 46 (1945), 695-707.

A. V. Jategaonkar, Relative Krull dimension and prime ideals in right Noetherian rings, Comm. Algebra 2 (1974), 429-468.

D. A. Jordan, Primitive Ore extensions, Glasgow Math. J. 18 (1977), no. 1, 93-97.

D. A. Jordan, Primitivity in skew Laurent polynomial rings and related rings, Math. Z. 213 (1993), no. 3, 353-371.

D. A. Jordan and S.-Q. Oh, Poisson spectra in polynomial algebras, J. Algebra 400 (2014), 56-71.

M. Kontsevich, Deformation quantization of Poisson manifolds, Lett. Math. Phys. 66 (2003), no. 3, 157-216.

G. R. Krause and T. H. Lenagan, Growth of algebras and gelfand-kirillov dimension, Revised edition. Graduate Studies in Mathematics, 22. American Mathematical Society, Providence, RI.

S. Launois and C. Lecoutre, Poisson deleting derivations algorithm and Poisson spectrum, Comm. Algebra 45 (2017), no. 3, 1294-1313.

A. Leroy and J. Matczuk, Primitivity of skew polynomial and skew Laurent polynomial rings, Comm. Algebra 24 (1996), no. 7, 2271-2284.

A. Leroy and J. Matczuk, On q-skew iterated Ore extensions satisfying a polynomial identity, J. Algebra Appl. 10 (2011), no. 4, 771-781.

E. Letzter, Primitive ideals in finite extensions of Noetherian rings, J. London Math. Soc. 39 (1989), no. 2-3, 427-435.

M. Lorenz, Primitive ideals of group algebras of supersoluble groups, Math. Ann. 225 (1977), no. 2, 115-122.

M. Lorenz, Group actions and rational ideals, Algebra Number Theory 2 (2008), no. 4, 467-499.

M. Lorenz, Algebraic group actions on noncommutative spectra, Transform. Groups 14 (2009), no. 3, 649-675.

M. Lorenz, On the stratification of noncommutative prime spectra, Proc. Amer. Math. Soc. 142 (2014), no. 9, 3013-3017.

C. Moeglin, Idéaux bilatères des algèbres enveloppantes, Bull. Soc. Math. France 108 (1980), 143-186.

C. Moeglin and R. Rentschler, Orbites d'un groupe algébrique dans l'espace des idéaux rationnels d'une algèbre enveloppante, Bull. Soc. Math. France 109 (1981), no. 2-3, 403-426.

C. Moeglin and R. Rentschler, Idéaux g-rationnels, Rang de Goldie. Unpublished manuscript, 1986.

S.-Q. Oh, Quantum and Poisson structures of multi-parameter symplectic and Euclidean spaces, J. Algebra 319 (2008), no. 11, 4485-4535.

, Poisson Hopf algebra related to a twisted quantum group, Comm. Algebra 45 (2017), no. 1, 76-104.

L. H. Rowen, Ring theory. vol. ii., Pure and Applied Mathematics, 128. Academic Press, Inc., Boston, MA, 1988.

L. H. Rowen, Graduate algebra: noncommutative view, Graduate Studies in Mathematics, 91. American Mathematical Society, Providence, RI, 2008.

R. L. Snider, Primitive ideals in group rings of polycyclic groups, Proc. Amer. Math. Soc. 57 (1976), no. 1, 8-10.

N. Vonessen, Actions of algebraic groups on the spectrum of rational ideals, J. Algebra 182 (1996), no. 2, 383-400.

N. Vonessen, Actions of algebraic groups on the spectrum of rational ideals. II., J. Algebra 208 (1998), no. 1, 216-261.

M. Yakimov, Invariant prime ideals in quantizations of nilpotent Lie algebras, Proc. Lond. Math. Soc.(3) 101 (2010), no. 2, 454-476.

M. Yakimov, On the spectra of quantum groups, Mem. Amer. Math. Soc. 229 (2014), no. 1078.

A. E. Zalesskii, The irreducible representations of finitely generated nilpotent groups without torsion, Mat. Zametki 9 (1971), 199-210.

Cómo citar

APA

Bell, J. (2019). On the importance of being primitive. Revista Colombiana de Matemáticas, 53(supl), 87–112. https://doi.org/10.15446/recolma.v53nsupl.84009

ACM

[1]
Bell, J. 2019. On the importance of being primitive. Revista Colombiana de Matemáticas. 53, supl (dic. 2019), 87–112. DOI:https://doi.org/10.15446/recolma.v53nsupl.84009.

ACS

(1)
Bell, J. On the importance of being primitive. rev.colomb.mat 2019, 53, 87-112.

ABNT

BELL, J. On the importance of being primitive. Revista Colombiana de Matemáticas, [S. l.], v. 53, n. supl, p. 87–112, 2019. DOI: 10.15446/recolma.v53nsupl.84009. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/84009. Acesso em: 22 ene. 2025.

Chicago

Bell, Jason. 2019. «On the importance of being primitive». Revista Colombiana De Matemáticas 53 (supl):87-112. https://doi.org/10.15446/recolma.v53nsupl.84009.

Harvard

Bell, J. (2019) «On the importance of being primitive», Revista Colombiana de Matemáticas, 53(supl), pp. 87–112. doi: 10.15446/recolma.v53nsupl.84009.

IEEE

[1]
J. Bell, «On the importance of being primitive», rev.colomb.mat, vol. 53, n.º supl, pp. 87–112, dic. 2019.

MLA

Bell, J. «On the importance of being primitive». Revista Colombiana de Matemáticas, vol. 53, n.º supl, diciembre de 2019, pp. 87-112, doi:10.15446/recolma.v53nsupl.84009.

Turabian

Bell, Jason. «On the importance of being primitive». Revista Colombiana de Matemáticas 53, no. supl (diciembre 11, 2019): 87–112. Accedido enero 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/84009.

Vancouver

1.
Bell J. On the importance of being primitive. rev.colomb.mat [Internet]. 11 de diciembre de 2019 [citado 22 de enero de 2025];53(supl):87-112. Disponible en: https://revistas.unal.edu.co/index.php/recolma/article/view/84009

Descargar cita

CrossRef Cited-by

CrossRef citations5

1. Adam Jones. (2023). Affinoid Dixmier Modules and the Deformed Dixmier-Moeglin Equivalence. Algebras and Representation Theory, 26(1), p.23. https://doi.org/10.1007/s10468-021-10084-4.

2. Be’eri Greenfeld. (2023). Gaps and approximations in the space of growth functions. Selecta Mathematica, 29(4) https://doi.org/10.1007/s00029-023-00862-x.

3. K. Brown, J. Stafford. (2024). Recent Advances in Noncommutative Algebra and Geometry. Contemporary Mathematics. 801, p.51. https://doi.org/10.1090/conm/801/16036.

4. T. T. H. Duyen, D. Gonçalves, T. G. Nam. (2024). On the Ideals of Ultragraph Leavitt Path Algebras. Algebras and Representation Theory, 27(1), p.77. https://doi.org/10.1007/s10468-023-10206-0.

5. Jason Bell, Léon Burkhardt, Nicholas Priebe. (2024). Recent Advances in Noncommutative Algebra and Geometry. Contemporary Mathematics. 801, p.1. https://doi.org/10.1090/conm/801/16035.

Dimensions

PlumX

Visitas a la página del resumen del artículo

255

Descargas

Los datos de descargas todavía no están disponibles.