Reduction to normal form of a self-adjoint linear transformation with respect to a pseudo-unitary or a pseudo-euclidean inner product
Palabras clave:
Pseudo-unitary, Pseudo-euclidean, Self-adjoint, Orthogonal, 2000 Mathematics Subject Classification, Primary: 15A21, Secondary: 15A57 (en)Descargas
Abstract. We provide a self-contained and constructive approach to reduce a self-adjoint linear transformation defined on a pseudo-unitary (resp., pseudoeuclidean) space to a canonical form.
Referencias
J. Bognar, Indefinite Inner Products, Springer-Verlag, New York-Heidelberg, 1974.
D. Z. Djokovic, J. Patera, P. Winternitz '& ; H. Zassenhaus, Normal forms of elements of classical real and complex Lie and Jordan algebras, J. Math. Phys. 4 (6) (1983), 1363-1374.
W. Greub, Linear Algebra, Fourth Ed., Springer-Verlag, New York, 1984.
L. Kronecker, Algebraische Reduction der Schaaren bilinearer Formen, Sitzungsber. Akad. Wiss Berlin (1890), 763-767.
A. I. Mal‘Cev, Foundations of Linear Algebra, W.H. Freeman and Company, San Francisco and London, 1963.
V. Mehrmann & H. Xu, Structured Jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products, The Electronic Journal of Linear Algebra, 5 (1999), 67-103.
G. E. Shilov, Linear Algebra, Dover Publications, New York, 1977.
F. Uhlig, A Canonical Form for a Pair of Real Symmetric Matrices That Generate a Nonsingular Pencil, Linear Algebra and its Applications 14 (1976), 189-209.
K. Weierstrass, Zur Theorie der bilinearen und quadratischen Formen, Monatsber. Akad. Wiss. Berlin (1868), 310-338.