Publié-e
E-infinity coalgebra structure on chain complexes with integer coefficients
E-infinito coalgebra estructura en complejos de cadenas con coeficientes enteros
DOI :
https://doi.org/10.15446/recolma.v55n2.102690Mots-clés :
Operad theory, Chain complexes, E-coalgebras, Barrat-Eccles operad (en)Teoría de operads, complejos de cadenas, E-coalgebras, operad de Barrat-Eccles (es)
Téléchargements
The aim of this paper is to construct an E∞-operad inducing an E∞-coalgebra structure on chain complexes with integer coefficients, which is an alternative description to the E∞-coalgebra by the Barrat-Eccles operad.
El objetivo de este artículo es construir un E∞-operad que induce una estructura de E∞-coalgebra en los complejos de cadenas con coeficientes enteros. Esta construcción produce una descripción alternativa a la E∞-coalgebra del operad de Barrat-Eccles.
Références
M. G. Barratt and P. J. Eccles, T+-structures-I: a free group functor for stable homotopy theory, Topology 13 (1974), no. 1, 25-45. DOI: https://doi.org/10.1016/0040-9383(74)90036-6
C. Berger and B. Fresse, Combinatorial operad actions on cochains, Mathematical Proceedings of the Cambridge Philosophical Society 137 (2004), 135-174. DOI: https://doi.org/10.1017/S0305004103007138
C. Berger and I. Moerdijk, Resolution of coloured operads and rectification of homotopy algebras, Contemporary mathematics 431 (2007), 31-58. DOI: https://doi.org/10.1090/conm/431/08265
J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1973. DOI: https://doi.org/10.1007/BFb0068547
M. Dehling and B. Vallette, Symmetric homotopy theory for operads, ArXiv e-prints (2015).
V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994), no. 1, 203-272. DOI: https://doi.org/10.1215/S0012-7094-94-07608-4
A. Prouté, Sur la transformation d'Eilenberg-Maclane, C. R. Acad. Sc. Paris 297 (1983), 193-194.
A. Prouté, Sur la diagonal d'Alexander-Whitney, C. R. Acad. Sc. Paris 299 (1984), 391-392.
J. Sánchez-Guevara, About L-algebras, Ph.D. thesis, Université Paris VII, Paris, 2016.
J. R. Smith, Iterating the cobar construction, American Mathematical Society: Memoirs of the American Mathematical Society, no. 524, American Mathematical Society, 1994. DOI: https://doi.org/10.1090/memo/0524