Publié-e
Vainikko operator on discrete Morrey spaces
El operador de Vainikko en espacios de Morrey discretos
DOI :
https://doi.org/10.15446/recolma.v57n2.115852Mots-clés :
discrete Morrey, Vainikko operator, commutator. (en)espacios de Morrey discretos, operador de Vainikko, conmutador (es)
Téléchargements
We prove boundedness of a discrete version of Vainikko operator on discrete Morrey spaces. We also show that the commutator of this Vainikko operator with a multiplication operator by an element of a discrete version of BMO is bounded on these spaces.
Probamos que una versión discreta del operador de Vainikko en espacios de Morrey discretos es acotado. También probamos que el conmutador de este operador de Vainikko con un operador de multiplicación discreto de tipo BMO es acotado en espacios de Morrey discretos.
Références
D. Aalto, L. Berkovits, O. Kansasen, and H. Yue, John-nirenberg lemmas for a doubling measure, Studia Math. 204 (2011), 21-37.
R. A. Aliev and A. N. Ahmadova, Boundedness of discrete Hilbert transform on discrete Morrey spaces, Ufa Mathematical Journal 13 (2021), 98-109.
L. Angeloni, J. Appell, and S. Reinwand, Some remarks on Vainikko integral operators in BV type spaces, Boll. Unione Mat. Ital. 13 (2020), 555-565.
J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, Vol. 29, American Mathematical Society, Providence, R.I., 2001.
H. Gunawan, E. Kikianty, Y. Sawano, and C. Schwanke, Three geometric constants for Morrey spaces, Bull. Korean Math. 56 (2019), 1569-1575.
H. Gunawan, E. Kikianty, and C. Schwanke, Discrete morrey spaces and their inclusion properties, Math. Nachr. 291 (2018), 1283-1296.
H. Gunawan and C. Schwanke, The Hardy-Littlewood maximal operator on discrete Morrey spaces, Mediterr. J. Math. 16 (2019), no. 24, 12 pp.
M. Guzman-Partida, Boundedness and compactness of some operators on discrete Morrey spaces, Comment. Math. Univ. Carolin. 62 (2021), 151-158.
E. Kikianty and C. Schwanke, Discrete Morrey spaces are closed subspaces of their continuous counterparts, Function Spaces XII, Banach Center Publications 119 (2019), 223-231.
L. B. Pierce, Discrete analogues in harmonic analysis, vol. 17, Ph.D. Dissertation, Princeton University, 2009.
E. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1971.
G. Vainikko, Cordial Volterra integral equations 1, Num. Funct. Anal. Optim. 30 (2009), 1145-1172.
G. Vainikko, Cordial Volterra integral equations 2, Num. Funct. Anal. Optim. 31 (2010), 191-219.