Publié-e

2024-11-05

New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations

Nuevos resultados de la transformada de ρ-Jafari y su aplicación a ecuaciones diferenciales fraccionarias generalizadas lineales y no lineales

DOI :

https://doi.org/10.15446/recolma.v58n1.117432

Mots-clés :

Jafari transform, generalized fractional integral, Caputo generalized fractional derivative, exact solution (en)
Transformada de Jafari, integral fraccionaria generalizada, derivada fraccionaria generalizada de Caputo, soluci´on exacta (es)

Téléchargements

Auteurs-es

  • Ali Khalouta Ferhat Abbas Sétif University

Recently Hossein Jafari introduced a new general integral transform called Jafari transform to solve higher order initial value problems and integral equations. The main objective of this paper is to modify this integral transform that we call the ρ-Jafari transform and to study its properties. Then, we present interesting results and apply them to solve linear and nonlinear generalized fractional differential equations. The results obtained confirmed that the ρ-Jafari transform acts as a powerful tool for generalized fractional problems. As a result, we assert that in the future, the modified transform can be applied to many generalized fractional differential equations that arise in applied science and engineering.

Recientemente, Hossein Jafari introdujo una nueva transformada integral general llamada transformada de Jafari para resolver problemas de valores iniciales de orden superior y ecuaciones integrales. El principal objetivo de este trabajo es modificar esta transformada integral que llamamos transformada ρ-Jafari y estudiar sus propiedades. Luego, presentamos resultados interesantes y los aplicamos para resolver ecuaciones diferenciales fraccionarias generalizadas lineales y no lineales. Los resultados obtenidos confirmaron que la transformada ρ-Jafari actúa como una poderosa herramienta para problemas fraccionarios generalizados. Como resultado, afirmamos que en el futuro, la transformada modificada se podrá aplicar a muchas ecuaciones diferenciales fraccionarias generalizadas que surgen en las ciencias aplicadas y la ingeniería.

Références

[1] A. S. Abedl-Rady, S. Z. Rida, A. A. M. Arafa, and H. R. Abedl-Rahim, Natural Transform for Solving Fractional Models, Journal of Applied Mathematics and Physics 3 (2015), 1633.

[2] Z. Al-Zhou, N. Al-Mutairi, F. Alrawajeh, and R. Alkhasawneh, New theoretical results and applications on conformable fractional Natural transform, Ain Shams Engineering Journal 12 (2021), 450-458.

[3] S. Alfaqeih, G. Bakicierler, and E. Misirli, Application of Double Shehu Transforms to Caputo Fractional Partial Differential Equations, Punjab University Journal of Mathematics 54 (2020), no. 1, 1-13.

[4] M. E. Benattia and K. Belghaba, Shehu Conformable Fractional Transform, Asian Journal of Mathematics and Computer Research 18 (2021), no. 1, 024-032.

[5] D. S. Bodkhe and S. K. Panchal, On Sumudu Transform of Fractional Derivatives And Its LApplications To Fractional Differential Equations, Asian Journal of Mathematics and Computer Research 11 (2016), no. 1, 69-77.

[6] M. Eslam and S. A. Taleghani, Differential transform method for conformable fractional partial differential equations, Iranian Journal of Numerical Analysis and Optimization 9 (2019), no. 2, 17-29.

[7] H. Jafar, A new general integral transform for solving integral equations, Journal of Advanced Research 33 (2021), 133-138.

[8] F. Jarad, T. Abdeljawad, and D. Baleanu, On the generalized fractional derivatives and their Caputo modification, Journal of Nonlinear Sciences and Applications 10 (2017), no. 5, 2607-2619.

[9] Q. D. Katatbeh and F. B. M. Belgacem, Applications of the Sumudu transform to fractional differential equations, Nonlinear Studies 18 (2011), no. 1, 99-112.

[10] U. N. Katugampola, New approach to generalized fractional integral, Applied Mathematics and Computation 218 (2011), 860-865.

[11] , A new approach to generalized fractional derivatives, Bulletin of Mathematical Analysis and Applications 6 (2014), 1-15.

[12] S. Kazem, Exact Solution of Some Linear Fractional Differential Equations by Laplace Transform, International Journal of Nonlinear Science 16 (2013), no. 1, 3-11.

[13] A. Khalouta, Exact solution of nonlinear time-fractional reaction-diffusion-convection equation via a new coupling method, International Journal of Nonlinear Analysis and Applications 13 (2022), no. 2, 333-344.

[14] A. Khalouta, A New Analytical Series Solution with Convergence for Non-linear Fractional Lienard’s Equations with Caputo Fractional Derivative, Kyungpook Mathematical Journal 62 (2022), no. 3, 583-593.

[15] A. Khalouta, A novel iterative method to solve nonlinear wave-like equations of fractional order with variable coefficients, Revista Colombiana de Matem´aticas 56 (2022), no. 1, 13-34.

[16] A. Khalouta, A novel representation of numerical solution for fractional Bratutype equation, Advanced Studies: Euro-Tbilisi Mathematical Journal 15 (2022), no. 1, 93-109.

[17] A. Khalouta, A new general integral transform for solving Caputo fractionalorder differential equations, International Journal of Nonlinear Analysis and Applications 14 (2023), no. 1, 67-78.

[18] A. Khalouta, A novel computational method for solving the fractional sis epidemic model of two different fractional operators, Annals of the University of Craiova, Mathematics and Computer Science Series 50 (2023), no. 1, 136-151.

[19] A. Khan, A. Khan, T. Khan, and G. Zaman, Extension of Triple Laplace Transform For Solving Fractional Differential Equations, Discrete And Continuous Dynamical Syst Series 13 (2020), no. 3, 755-768.

[20] A. A. Kilbas, H. M. Srivastava, and J. J.Trujillo, Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006.

[21] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, 1993.

[22] J. N. Onyeoghane and I. N. Njoseh, Modified variational iteration method for the solution of the time-fractional Nagumo equation, Nigerian Journal of Science and Environment 19 (2021), no. 2, 163-169.

[23] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999.

[24] M. S. Rawashdeh and H. Al-Jammal, Theories and applications of the inverse fractional natural transform method, Advances in Difference Equations 218 (2018), no. 222, https://doi.org/10.1186/s13662-018-1673-0.

[25] K. M. Saad and A. A. AL-Shmrani, An application of homotopy analysis transform method for Riccati differential equation of fractional order, Journal of Fractional Calculus and Applications 7 (2016), no. 1, 61-72.

[26] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993.

[27] Y-J. Yang and S-Q. Wang, An improved homotopy perturbation method for solving local fractional nonlinear oscillators, Journal of Low Frequency Noise, Vibration and Active Control 38 (2019), no. 3-4, 918-927.

[28] E. A. A. Ziada, Solution of nonlinear fractional differential equations using adomain decomposition method, International Journal of Systems Science and Applied Mathematics 6 (2021), no. 4, 111-119.

Comment citer

APA

Khalouta, A. (2024). New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations. Revista Colombiana de Matemáticas, 58(1), 25–46. https://doi.org/10.15446/recolma.v58n1.117432

ACM

[1]
Khalouta, A. 2024. New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations. Revista Colombiana de Matemáticas. 58, 1 (nov. 2024), 25–46. DOI:https://doi.org/10.15446/recolma.v58n1.117432.

ACS

(1)
Khalouta, A. New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations. rev.colomb.mat 2024, 58, 25-46.

ABNT

KHALOUTA, A. New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations. Revista Colombiana de Matemáticas, [S. l.], v. 58, n. 1, p. 25–46, 2024. DOI: 10.15446/recolma.v58n1.117432. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/117432. Acesso em: 21 nov. 2024.

Chicago

Khalouta, Ali. 2024. « New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations ». Revista Colombiana De Matemáticas 58 (1):25-46. https://doi.org/10.15446/recolma.v58n1.117432.

Harvard

Khalouta, A. (2024) « New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations », Revista Colombiana de Matemáticas, 58(1), p. 25–46. doi: 10.15446/recolma.v58n1.117432.

IEEE

[1]
A. Khalouta, « New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations », rev.colomb.mat, vol. 58, nᵒ 1, p. 25–46, nov. 2024.

MLA

Khalouta, A. « New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations ». Revista Colombiana de Matemáticas, vol. 58, nᵒ 1, novembre 2024, p. 25-46, doi:10.15446/recolma.v58n1.117432.

Turabian

Khalouta, Ali. « New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations ». Revista Colombiana de Matemáticas 58, no. 1 (novembre 5, 2024): 25–46. Consulté le novembre 21, 2024. https://revistas.unal.edu.co/index.php/recolma/article/view/117432.

Vancouver

1.
Khalouta A. New results of the ρ-Jafari transform and their application to linear and nonlinear generalized fractional differential equations. rev.colomb.mat [Internet]. 5 nov. 2024 [cité 21 nov. 2024];58(1):25-46. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/117432

Télécharger la référence

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Consultations de la page du résumé de l'article

20

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.