Remarks on weakly continuous functions in banach spaces
Mots-clés :
Finite sequence, polynomial, real function (es)Téléchargements
Let E be a Banach space over the real.s and let E* be the dual space. Le t = (∝1 , …, ∝n) be a finite sequence of non-negative integers and u = (u1, …,un) a finite sequence of elements in E*. The notation u∝ = u1 u1∝1 … u1∝1 … un∝n is standard and will used throughout. We will write
|∝| = ∝1 + … + ∝n . Any real valued function in E of the form
P = ∑ (|∝|≤n) a∝ u∝ , a∝ a real number, is said to be a polynomial. Clearly, every polynomial is weakly continuous.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1968
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.