Publié-e
Linear functionals and local measures: a version of the Riesz representation theorem in the context of metric spaces
Mots-clés :
Riesz representation, compact Hausdorff, theorem, topological vector space, infinite dimension. (es)
Téléchargements
The classical version of the Riesz Representation Theorem is proved in the context of localIy compact Hausdorff spaces and the local compactness plays an essential role ([1]). This means, for ins tance, that the theorem is not true when the underlying space is a topological vector space of infinite dimension. This paper shows that it is possible to modify the classic proof to establish a natural extension of this theorem in the context of metric spaces or, more generally, in the context on paracomp et spaces (see results in sections 5, 6, 7, 8).
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1974
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.