Extreme points of numerical ranges of quasihyponormal operators
Mots-clés :
Operator quasihypnormal, Hilbert space, breakpoint, numerical range is hyponormal (es)Téléchargements
It is shown that a quasihypnormal operator on a Hilbert space having 0 as a boundary point of its numerical range is hyponormal. A necessary and sufficient condition is given for the extreme points of the numerical range of a quasihyponormal operator to be eigenvalues. It is also established that if T is bounded and there is IIxll = 1 such that IITxll = IITII and that < Tx, x > is a boundary point of the numerical range of T. then T has eigenvalues. Finally, an example is included of a paranormal operator which is not convexoid and such that T -∝ I is not paranormal for certain values of ∝.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1993
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.