Publié-e
The L2-order of magnitude of Vilenkin-Fourier coefficients
Mots-clés :
Vilenkin groups, Lipschitz functions, Fourier transforms (es)
Téléchargements
Let G be a compact, metrizable, zero-dimensional, abelian gruop, i.e ., a Vilenkin group. It is well known ([2], [6] for example) that if f belongs to the Lipschitz class Lip (∝, p, G), 0 ≤ ∝ ≤ 1, 1 < p ≤ 2, then its Fourier transform f belongs to ℓB (Ĝ) for p/(p + ∝p - 1) < β ≤ p´ = p/(p - 1), where Ĝ is the dual of G. For Lipschitz functions on the real line ℝ and on the circle group T ([3], Theorem 85, p. 117; [5], Theorem (1.3) c, p. 108), the special case p = 2, 0 < ∝ <1, reveals some reversibility between the conditions on f and f. In the present work we extend, among other things, this reversibility to the L2 Lipschitz functions on Vilenkin groups.
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 1996
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.