Publié-e

2014-01-01

Spaces of Morphisms From a Projective Space to a Toric Variety

Espacios de morfismos de un espacio proyectivo a una variedad tórica

DOI :

https://doi.org/10.15446/recolma.v48n1.45194

Mots-clés :

Toric variety, Stone-Weierstrass Theorem, Spaces of toric morphisms, simplicial resolution (en)
Variedad tórica, espacios de morfismos tóricos, Teorema de Stone-Weierstrass, resolución simplicial (es)

Auteurs-es

  • Jacob Mostovoy CINVESTAV-IPN
  • Eréndira Munguía-Villanueva Institut de Mathématiques de Jussieu
In this note we study the space of morphisms from a complex projective space to a compact smooth toric variety X. It is shown that the first author's stability theorem for the spaces of rational maps from CPm to CPn extends to the spaces of continuous morphisms from CPm to X, essentially, with the same proof. In the case of curves, our result improves the known bounds for the stabilization dimension.
En esta nota se estudia el espacio de morfismos de un espacio proyectivo complejo a una variedad tórica compacta no singular X. Se prueba que el teorema de estabilidad, demostrado por el primer autor para los espacios de funciones racionales de CPm a CPn, se extiende a los espacios de morfismos continuos de CPm a X, esencialmente con la misma demostración. En el caso de las curvas, nuestro resultado mejora las cotas conocidas para la dimensión de la estabilización.

Spaces of Morphisms From a Projective Space to a Toric Variety

Espacios de morfismos de un espacio proyectivo a una variedad tórica

JACOB MOSTOVOY1, ERÉNDIRA MUNGUÍA-VILLANUEVA2

1CINVESTAV-IPN, México, D.F., México. Email: jacob@math.cinvestav.mx
2Institut de Mathématiques de Jussieu, Paris, France. Email: erendira.munguia@gmail.com


Abstract

In this note we study the space of morphisms from a complex projective space to a compact smooth toric variety X. It is shown that the first author's stability theorem for the spaces of rational maps from CPm to CPn extends to the spaces of continuous morphisms from CPm to X, essentially, with the same proof. In the case of curves, our result improves the known bounds for the stabilization dimension.

Key words: Toric variety, Stone-Weierstrass Theorem, Spaces of toric morphisms, simplicial resolution.


2000 Mathematics Subject Classification: 58D15, 32Q55.

Resumen

En esta nota se estudia el espacio de morfismos de un espacio proyectivo complejo a una variedad tórica compacta no singular X. Se prueba que el teorema de estabilidad, demostrado por el primer autor para los espacios de funciones racionales de CPm a CPn, se extiende a los espacios de morfismos continuos de CPm a X, esencialmente con la misma demostración. En el caso de las curvas, nuestro resultado mejora las cotas conocidas para la dimensión de la estabilización.

Palabras clave: Variedad tórica, espacios de morfismos tóricos, Teorema de Stone-Weierstrass, resolución simplicial.


Texto completo disponible en PDF


References

[1] M. Adamaszek, A.Kozlowski, and K. Yamaguchi, `Spaces of Algebraic and Continuous Maps between Real Algebraic Varieties', Quart. J. Math. 62, (2011), 771-790.

[2] C. Boyer, J. Hurtubise, and J. Milgram, `Stability Theorems for Spaces of Rational Curves', Internat. J. Math. 12, (2001), 223-262.

[3] R. Cohen, J. D. S. Jones, and G. Segal, `Stability for Holomorphic Spheres and Morse Theory', Contemp. Math. 258, (2000), 87-106.

[4] R. Cohen, E. Lupercio, and G. Segal, `Holomorphic Spheres in Loop Groups and Bott Periodicity', Asian J. Math. 3, (1999), 801-818.

[5] D. A. Cox, `The Homogeneous Coordinate Ring of a Toric Variety', J. Algebraic Geom. 4, (1995a), 17-50.

[6] D. A. Cox, `The Functor of a Smooth Toric Variety', Tohoku Math. J. 47, (1995b), 251-262.

[7] D. A. Cox, J. B. Little, and H. K. Schenck, Toric Varieties, Amer. Math. Soc, 2011.

[8] W. Fulton, Introduction to Toric Varieties, Princeton University Press, 1993.

[9] J. Gravesen, `On the Topology of Spaces of Holomorphic Maps', Acta Math. 162, (1989), 247-286.

[10] M. Guest, `Topology of the Space of Absolute Minima of the Energy Functional', Amer. J. Math. 106, (1984), 21-42.

[11] M. Guest, `The Topology of the Space of Rational Curves on a Toric Variety', Acta Math. 174, (1995), 119-145.

[12] M. Guest, A. Kozlowski, and K. Yamaguchi, `Spaces of Polynomials with Roots of Bounded Multiplicity', Fund. Math. 161, (1999), 93-117.

[13] J. Hurtubise, `Holomorphic Maps of a Riemann Surface Into a Flag Manifold', J. Diff. Geom 43, (1996), 99-118.

[14] F. Kirwan, `On Spaces of Maps From Riemann Surfaces to Grassmannians and Applications to the Cohomology of Moduli of Vector Bundles', Ark. Mat. 24, (1986), 221-275.

[15] B. Mann and J. Milgram, `Some Spaces of Holomorphic Maps to Complex Grassmann Manifolds', J. Diff. Geom. 33, (1991), 301-324.

[16] B. Mann and J. Milgram, `The Topology of Rational Maps to Grassmannians and a Homotopy Theoretic Proof of the Kirwan Stability Theorem', Contemp. Math. 146, (1993), 251-275.

[17] J. Mostovoy, `Spaces of Rational Loops on a Real Projective Space', Trans. Amer. Math. Soc. 353, (2001), 1959-1970.

[18] J. Mostovoy, `Spaces of Rational Maps and the Stone-Weierstrass Theorem', Topology 45, (2006), 281-293.

[19] J. Mostovoy, `Truncated Simplicial Resolutions and Spaces of Rational Maps', Quart. J. Math. 63, (2012), 181-187.

[20] G. Segal, `The Topology of Spaces of Rational Functions', Acta Math. 143, (1979), 39-72.

[21] V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications, Vol. 98 of Translations of Mathematical Monographs, Amer. Math. Soc., 1992.


(Recibido en marzo de 2013. Aceptado en agosto de 2013)

Este artículo se puede citar en LaTeX utilizando la siguiente referencia bibliográfica de BibTeX:

@ARTICLE{RCMv48n1a03,
    AUTHOR  = {Mostovoy, Jacob and Munguía-Villanueva, Eréndira},
    TITLE   = {{Spaces of Morphisms From a Projective Space to a Toric Variety}},
    JOURNAL = {Revista Colombiana de Matemáticas},
    YEAR    = {2014},
    volume  = {48},
    number  = {1},
    pages   = {41--53}
}

Références

M. Adamaszek, A.Kozlowski, and K. Yamaguchi, `Spaces of Algebraic and Continuous Maps between Real Algebraic Varieties', Quart. J. Math. 62, (2011), 771-790.

C. Boyer, J. Hurtubise, and J. Milgram, `Stability Theorems for Spaces of Rational Curves', Internat. J. Math. 12, (2001), 223-262.

R. Cohen, J. D. S. Jones, and G. Segal, `Stability for Holomorphic Spheres and Morse Theory', Contemp. Math. 258, (2000), 87-106.

R. Cohen, E. Lupercio, and G. Segal, `Holomorphic Spheres in Loop Groups and Bott Periodicity', Asian J. Math. 3, (1999), 801-818.

D. A. Cox, `The Homogeneous Coordinate Ring of a Toric Variety', J. Algebraic Geom. 4, (1995a), 17-50.

D. A. Cox, `The Functor of a Smooth Toric Variety', Tohoku Math. J. 47, (1995b), 251-262.

D. A. Cox, J. B. Little, and H. K. Schenck, Toric Varieties, Amer. Math. Soc, 2011.

W. Fulton, Introduction to Toric Varieties, Princeton University Press, 1993.

J. Gravesen, `On the Topology of Spaces of Holomorphic Maps', Acta Math. 162, (1989), 247-286.

M. Guest, `Topology of the Space of Absolute Minima of the Energy Functional', Amer. J. Math. 106, (1984), 21-42.

M. Guest, `The Topology of the Space of Rational Curves on a Toric Variety', Acta Math. 174, (1995), 119-145.

M. Guest, A. Kozlowski, and K. Yamaguchi, `Spaces of Polynomials with Roots of Bounded Multiplicity', Fund. Math. 161, (1999), 93-117.

J. Hurtubise, `Holomorphic Maps of a Riemann Surface Into a Flag Manifold', J. Diff. Geom 43, (1996), 99-118.

F. Kirwan, `On Spaces of Maps From Riemann Surfaces to Grassmannians and Applications to the Cohomology of Moduli of Vector Bundles', Ark. Mat. 24, (1986), 221-275.

B. Mann and J. Milgram, `Some Spaces of Holomorphic Maps to Complex Grassmann Manifolds', J. Diff. Geom. 33, (1991), 301-324.

B. Mann and J. Milgram, `The Topology of Rational Maps to Grassmannians and a Homotopy Theoretic Proof of the Kirwan Stability Theorem', Contemp. Math. 146, (1993), 251-275.

J. Mostovoy, `Spaces of Rational Loops on a Real Projective Space', Trans. Amer. Math. Soc. 353, (2001), 1959-1970.

J. Mostovoy, `Spaces of Rational Maps and the Stone-Weierstrass Theorem', Topology 45, (2006), 281-293.

J. Mostovoy, `Truncated Simplicial Resolutions and Spaces of Rational Maps', Quart. J. Math. 63, (2012), 181-187.

G. Segal, `The Topology of Spaces of Rational Functions', Acta Math. 143, (1979), 39-72.

V. A. Vassiliev, Complements of Discriminants of Smooth Maps: Topology and Applications, Vol. 98 of Translations of Mathematical Monographs, Amer. Math. Soc., 1992.

Comment citer

APA

Mostovoy, J. et Munguía-Villanueva, E. (2014). Spaces of Morphisms From a Projective Space to a Toric Variety. Revista Colombiana de Matemáticas, 48(1), 41–53. https://doi.org/10.15446/recolma.v48n1.45194

ACM

[1]
Mostovoy, J. et Munguía-Villanueva, E. 2014. Spaces of Morphisms From a Projective Space to a Toric Variety. Revista Colombiana de Matemáticas. 48, 1 (janv. 2014), 41–53. DOI:https://doi.org/10.15446/recolma.v48n1.45194.

ACS

(1)
Mostovoy, J.; Munguía-Villanueva, E. Spaces of Morphisms From a Projective Space to a Toric Variety. rev.colomb.mat 2014, 48, 41-53.

ABNT

MOSTOVOY, J.; MUNGUÍA-VILLANUEVA, E. Spaces of Morphisms From a Projective Space to a Toric Variety. Revista Colombiana de Matemáticas, [S. l.], v. 48, n. 1, p. 41–53, 2014. DOI: 10.15446/recolma.v48n1.45194. Disponível em: https://revistas.unal.edu.co/index.php/recolma/article/view/45194. Acesso em: 22 janv. 2025.

Chicago

Mostovoy, Jacob, et Eréndira Munguía-Villanueva. 2014. « Spaces of Morphisms From a Projective Space to a Toric Variety ». Revista Colombiana De Matemáticas 48 (1):41-53. https://doi.org/10.15446/recolma.v48n1.45194.

Harvard

Mostovoy, J. et Munguía-Villanueva, E. (2014) « Spaces of Morphisms From a Projective Space to a Toric Variety », Revista Colombiana de Matemáticas, 48(1), p. 41–53. doi: 10.15446/recolma.v48n1.45194.

IEEE

[1]
J. Mostovoy et E. Munguía-Villanueva, « Spaces of Morphisms From a Projective Space to a Toric Variety », rev.colomb.mat, vol. 48, nᵒ 1, p. 41–53, janv. 2014.

MLA

Mostovoy, J., et E. Munguía-Villanueva. « Spaces of Morphisms From a Projective Space to a Toric Variety ». Revista Colombiana de Matemáticas, vol. 48, nᵒ 1, janvier 2014, p. 41-53, doi:10.15446/recolma.v48n1.45194.

Turabian

Mostovoy, Jacob, et Eréndira Munguía-Villanueva. « Spaces of Morphisms From a Projective Space to a Toric Variety ». Revista Colombiana de Matemáticas 48, no. 1 (janvier 1, 2014): 41–53. Consulté le janvier 22, 2025. https://revistas.unal.edu.co/index.php/recolma/article/view/45194.

Vancouver

1.
Mostovoy J, Munguía-Villanueva E. Spaces of Morphisms From a Projective Space to a Toric Variety. rev.colomb.mat [Internet]. 1 janv. 2014 [cité 22 janv. 2025];48(1):41-53. Disponible à: https://revistas.unal.edu.co/index.php/recolma/article/view/45194

Télécharger la référence

CrossRef Cited-by

CrossRef citations7

1. Andrzej KOZLOWSKI, Masahiro OHNO, Kohhei YAMAGUCHI. (2016). Spaces of algebraic maps from real projective spaces to toric varieties. Journal of the Mathematical Society of Japan, 68(2) https://doi.org/10.2969/jmsj/06820745.

2. A. Kozlowski, K. Yamaguchi. (2018). The homotopy type of spaces of rational curves on a toric variety. Topology and its Applications, 249, p.19. https://doi.org/10.1016/j.topol.2018.06.006.

3. A. Kozlowski, K. Yamaguchi. (2016). The homotopy type of spaces of coprime polynomials revisited. Topology and its Applications, 206, p.284. https://doi.org/10.1016/j.topol.2016.03.033.

4. A. Kozlowski, K. Yamaguchi. (2021). The homotopy type of the space of algebraic loops on a toric variety. Topology and its Applications, 300, p.107705. https://doi.org/10.1016/j.topol.2021.107705.

5. A. Kozlowski, K. Yamaguchi. (2023). Spaces of non-resultant systems of bounded multiplicity determined by a toric variety. Topology and its Applications, 337, p.108626. https://doi.org/10.1016/j.topol.2023.108626.

6. Claudio Gómez-Gonzáles, Jesse Wolfson. (2021). Problems in arithmetic topology. Research in the Mathematical Sciences, 8(2) https://doi.org/10.1007/s40687-021-00264-5.

7. Claudio Gómez-Gonzáles. (2020). Spaces of non-degenerate maps between complex projective spaces. Research in the Mathematical Sciences, 7(3) https://doi.org/10.1007/s40687-020-00224-5.

Dimensions

PlumX

Consultations de la page du résumé de l'article

316

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.