Publié-e
Multiplication operators in variable Lebesgue spaces
DOI :
https://doi.org/10.15446/recolma.v49n2.60447Mots-clés :
Multiplication operator, variable Lebesgue spaces, compactness (en)Téléchargements
In this note we will characterize the boundedness, invertibility, compactness and closedness of the range of multiplication operators on variable Lebesgue spaces.
DOI: https://doi.org/10.15446/recolma.v49n2.60447
Multiplication operators in variable Lebesgue spaces
Operador multiplicación en los espacios de Lebesgue con exponente variable
René Erlin Castillo1, Julio C. Ramos Fernández2, Humberto Rafeiro3
1 Universidad Nacional de Colombia, Bogotá, Colombia
e-mail: recastillo@unal.edu.co
2 Universidad de Oriente, Cumaná, Venezuela
e-mail: jcramos@udo.edu.ve
3 Pontificia Universidad Javeriana, Bogotá, Colombia
e-mail: silva-h@javeriana.edu.co
Abstract
In this note we will characterize the boundedness, invertibility, compactness and closedness of the range of multiplication operators on variable Lebesgue spaces.
Key words and phrases. Multiplication operator, variable Lebesgue spaces, compactness.
2010 Mathematics Subject Classification. Primary 47B38; Secondary 46E30.
Resumen
En esta nota vamos a caracterizar los operadores multiplicación que son continuos, invertibles y que tienen rango cerrados sobre los espacios de Lebesgue con exponente variable.
Palabras y frases clave. Operador multiplicación, espacios de Lebesgue variables, compacidad.
Texto completo disponible en PDF
References
[1] R. Aboulaich, S. Boujena, and E. El Guarmah, Sur un modèle non-linéaire pour le débruitage de l'image, C. R. Math. Acad. Sci. Paris 345 (2007), no. 8, 425-429.
[2] R. Aboulaich, D. Meskine, and A. Souissi, New diffusion models in image processing, Comput. Math. Appl. 56 (2008), no. 4, 874-882.
[3] M. B. Abrahamse, Multiplication operators, Hilbert space operators (Proc. Conf., Calif. State Univ., Long Beach, Calif., 1977), Lecture Notes in Math., vol. 693, Springer, Berlin, 1978, pp. 17-36.
[4] E. Acerbi and G. Mingione, Regularity results for electrorheological fluids: the stationary case, C. R. Math. Acad. Sci. Paris 334 (2002), no. 9, 817-822.
[5] _______, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal. 164 (2002), no. 3, 213-259.
[6] S. N. Antontsev and J. F. Rodrigues, On stationary thermo-rheological viscous flows, Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006), no. 1, 19-36.
[7] S. C. Arora, G. Datt, and S. Verma, Multiplication operators on Lorentz spaces, Indian J. Math. 48 (2006), no. 3, 317-329.
[8] _______, Multiplication and composition operators on Lorentz-Bochner spaces, Osaka J. Math. 45 (2008), no. 3, 629-641.
[9] S. Axler, Multiplication operators on Bergman spaces, J. Reine Angew. Math. 336 (1982), 26-44.
[10] P. V. Blomgren, Total variation methods for restoration of vector valued images, ProQuest LLC, Ann Arbor, MI, 1998, Thesis (Ph.D.)-University of California, Los Angeles.
[11] E. M. Bollt, R. Chartrand, S. EsedoḢlu, P. Schultz, and K. R. Vixie, Graduated adaptive image denoising: local compromise between total variation and isotropic diffusion, Adv. Comput. Math. 31 (2009), no. 1-3, 61-85.
[12] R.E. Castillo, R. León, and E. Trousselot, Multiplication operator on L(p,q) spaces, Panamer. Math. J. 19 (2009), no. 1, 37-44.
[13] R.E. Castillo, J.C. Ramos Fernández, and F.A. Vallejo Narvaez, Multiplication and composition operators on weak Lp spaces, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 3, 927-973, DOI:10.1007/s40840-014-0081-1.
[14] Y. Chen, W. Guo, Q. Zeng, and Y. Liu, A nonstandard smoothing in reconstruction of apparent diffusion coeficient profiles from diffusion weighted images, Inverse Probl. Imaging 2 (2008), no. 2, 205-224.
[15] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (2006), no. 4, 1383-1406 (electronic).
[16] D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkh¨auser/Springer, Heidelberg, 2013.
[17] L. Diening, P. Harjulehto, Hästö, and M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, vol. 2017, Springer, Heidelberg, 2011.
[18] R. G. Douglas, Banach algebra techniques in operator theory, second ed., Graduate Texts in Mathematics, vol. 179, Springer-Verlag, New York, 1998.
[19] N. Dunford and J. T. Schwartz, Linear operators. Part I. General theory, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988.
[20] I. Eryilmaz, Multiplication operators on Lorentz-Karamata-Bochner spaces, Math. Slovaca 62 (2012), no. 2, 293-300.
[21] X. Fan and D. Zhao, On the spaces Lp(x)(Ω) and W m,p(x)(Ω), J. Math. Anal. Appl. 263 (2001), no. 2, 424-446.
[22] P. R. Halmos, A Hilbert space problem book, second ed., Graduate Texts in Mathematics, vol. 19, Springer-Verlag, New York-Berlin, 1982, Encyclopedia of Mathematics and its Applications, 17.
[23] P. Harjulehto, P. Hastö, U. V. Le, and M. Nuortio, Overview of differential equations with non-standard growth., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), no. 12, 4551-4574.
[24] P. Harjulehto, P. H¨astö, and M. Pere, Variable exponent Lebesgue spaces on metric spaces: the Hardy-Littlewood maximal operator, Real Anal. Exchange 30 (2004/05), no. 1, 87-103.
[25] H. Hudzik, R. Kumar, and R. Kumar, Matrix multiplication operators on Banach function spaces., Proc. Indian Acad. Sci., Math. Sci. 116 (2006), no. 1, 71-81 (English).
[26] B. S. Komal and S. Gupta, Multiplication operators between Orlicz spaces., Integral Equations Oper. Theory 41 (2001), no. 3, 324-330 (English).
[27] O. Kováčik and J. Rákosník, On spaces Lp(x) and W k,p(x), Czech. Math. J. 41 (1991), no. 4, 592-618 (English).
[28] G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations., Appl. Math. 51 (2006), no. 4, 355-425.
[29] W. Orlicz, Über konjugierte Exponentenfolgen., Studia Math. 3 (1931), 200-211 (German).
[30] H. Rafeiro and E. Rojas, Espacios de Lebesgue con exponente variable. Un espacio de Banach de funciones medibles, Ediciones IVIC, Instituto Venezolano de Investigaciones Científicas, Caracas, 2014 (Spanish).
[31] M. Růžička, Electrorheological fluids: modeling and mathematical theory, Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.
[32] H. Takagi, Fredholm weighted composition operators., Integral Equations Oper. Theory 16 (1993), no. 2, 267-276.
[33] H. Takagi and K. Yokouchi, Multiplication and composition operators between two Lp-spaces., Function spaces. Proceedings of the 3rd conference, Edwardsville, IL, USA, May 19-23, 1998, Providence, RI: American Mathematical Society, 1999, pp. 321-338.
[34] T. Wunderli, On time flows of minimizers of general convex functionals of linear growth with variable exponent in BV space and stability of pseudosolutions., J. Math. Anal. Appl. 364 (2010), no. 2, 591-598.
(Recibido en marzo de 2014. Aceptado en octubre de 2015)
Comment citer
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Télécharger la référence
CrossRef Cited-by
1. Juan D. Cardona-Gutierrez, Julio C. Ramos Fernández, Margot Salas-Brown. (2024). Fredholm weighted composition operators between weighted lp spaces: A simple process point of view. Analysis, 44(2), p.85. https://doi.org/10.1515/anly-2022-1080.
2. D. S. Bajaj, G. Datt. (2024). Composition operators on variable exponent Lebesgue spaces. Analysis Mathematica, 50(2), p.345. https://doi.org/10.1007/s10476-024-00015-y.
3. Gopal Datt, Daljeet Singh Bajaj, Alberto Fiorenza. (2024). Weighted composition operators on variable exponent Lebesgue spaces. Advances in Operator Theory, 9(3) https://doi.org/10.1007/s43036-024-00366-1.
4. Julio C. Ramos-Fernández, Margot Salas-Brown. (2017). On multiplication operators acting on Köthe sequence spaces. Afrika Matematika, 28(3-4), p.661. https://doi.org/10.1007/s13370-016-0475-3.
5. Franklin R. Astudillo-Villalba, Julio C. Ramos-Fernández, Margot Salas-Brown. (2021). Multiplication operators between different Wiener-type variation spaces. Rendiconti del Circolo Matematico di Palermo Series 2, 70(3), p.1617. https://doi.org/10.1007/s12215-020-00565-8.
6. Gopal Datt, Daljeet Singh Bajaj, Alberto Fiorenza. (2025). Ascent and descent of multiplication and composition induced operators on variable exponent lebesgue spaces. Rendiconti del Circolo Matematico di Palermo Series 2, 74(1) https://doi.org/10.1007/s12215-024-01121-4.
7. Franklin R. Astudillo-Villalba, Julio C. Ramos-Fernández. (2017). Multiplication operators on the space of functions of bounded variation. Demonstratio Mathematica, 50(1), p.105. https://doi.org/10.1515/dema-2017-0012.
8. René Erlin Castillo, Humberto Rafeiro, Julio C. Ramos-Fernández, Margot Salas-Brown. (2019). Multiplication Operator on Köthe Spaces: Measure of Non-compactness and Closed Range. Bulletin of the Malaysian Mathematical Sciences Society, 42(4), p.1523. https://doi.org/10.1007/s40840-017-0562-0.
9. Julio C. Ramos-Fernández, María A. Rivera-Sarmiento, Margot Salas-Brown. (2019). On the Essential Norm of Multiplications Operators Acting on Cesàro Sequence Spaces. Journal of Function Spaces, 2019, p.1. https://doi.org/10.1155/2019/5069610.
10. René E. Castillo, Julio C. Ramos-Fernández, Harold Vacca-González. (2021). Properties of multiplication operators on the space of functions of bounded φ-variation. Open Mathematics, 19(1), p.492. https://doi.org/10.1515/math-2021-0050.
11. Büsra Aris, Serap Öztop, Seyyed Mohammad Tabatabaie, Badik Hüseyin Uysal, Rüya Üster. (2024). Multiplication Operators on Generalized Orlicz Spaces Associated to Banach Function Spaces. Iranian Journal of Science, 48(6), p.1489. https://doi.org/10.1007/s40995-024-01723-8.
12. Serkan DEMİRİZ, Emrah KARA. (2021). Multiplication Operators on Second Order Cesaro-Orlicz Sequence Spaces. Mathematical Sciences and Applications E-Notes, 9(4), p.151. https://doi.org/10.36753/mathenot.944392.
Dimensions
PlumX
Consultations de la page du résumé de l'article
Téléchargements
Licence
© Revista Colombiana de Matemáticas 2015
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.