Coverings of Configurations, Prime Configurations, and Orbiconfigurations
Recubrimientos de configuraciones, configuraciones primas, y orbiconfiguraciones
DOI :
https://doi.org/10.15446/recolma.v54n2.93844Mots-clés :
Configuration, covering, orbiconfiguration (en)Configuración, orbiconfiguraciones, recubrimientos (es)
Téléchargements
This exploratory paper considers the notion of a covering of a configuration and G-coverings which are coverings that are quotients under a semi-regular group action. We consider prime configurations, those which cannot G-cover other configurations, before considering orbiconfigurations. These are a generalized notion of a configuration in the spirit of an orbifold. We derive some specific results as to when configurations are prime as well as considering when an orbiconfiguration is bad - that is, when it cannot be G-covered by a configuration. A number of open questions are posited within.
Este artículo exploratorio considera la noción de un recubrimiento de una configuración y los G-recubrimientos, recubrimientos que son cocientes de una acción de grupo semi-regular. Consideramos las configuraciones primas, aquellas que no pueden G-recubrir otras configuraciones, antes de considerar las orbiconfiguraciones. Se trata de una noción generalizada de una configuración en el espíritu de un orbifold. Derivamos algunos resultados específicos de cuándo las configuraciones son primas. Tenemos en cuenta cuándo una orbiconfiguración es mala, es decir, cuándo no puede ser recubierta por una configuración. En el artículo se plantean una serie de preguntas abiertas.
Références
D. Angluin and A. Gardiner, Finite common coverings of pairs of regular graphs, Journal of Combinatorial Theory, Series B 30 (1981), no. 2, 184-187. DOI: https://doi.org/10.1016/0095-8956(81)90062-9
A. Betten, G. Brinkmann, and T. Pisanski, Counting symmetric v3 configurations, Discrete Applied Mathematics 99 (2000), no. 1-3, 331-338. DOI: https://doi.org/10.1016/S0166-218X(99)00143-2
H. S. M. Coxeter, Configurations and maps, Bulletin of the Mathematical Society, vol. 53, 1947, pp. 921-921.
K. Daly, C. Gavin, G. Montes de Oca, D. Ochoa, E. Stanhope, and S. Stewart, Orbigraphs: a graph-theoretic analog to riemannian orbifolds, Involve, a Journal of Mathematics 12 (2019), no. 5, 721-736. DOI: https://doi.org/10.2140/involve.2019.12.721
B. Grünbaum, Configurations of points and lines, vol. 103, American Mathematical Soc., 2009. DOI: https://doi.org/10.1090/gsm/103
A. Hatcher, Algebraic topology, Cambridge University Press, 2002.
F. T. Leighton, Finite common coverings of graphs, Journal of Combinatorial Theory, Series B 33 (1982), no. 3, 231-238. DOI: https://doi.org/10.1016/0095-8956(82)90042-9
F. W. Levi, Finite geometrical systems: six public lectures delivered in february, 1940, at the university of calcutta, The University of Calcutta, 1942.
N. S. Mendelsohn, R. Padmanabhan, and B. Wolk, Planar projective configurations (part 1), Note di Matematica 7 (1987), no. 1, 91-112.
W. D. Neumann, On Leighton^as graph covering theorem, Groups, Geometry, and Dynamics 4 (2010), no. 4, 863-872. DOI: https://doi.org/10.4171/GGD/111
M. P. Van Straten, The topology of the configuration of desargues and pappus, Ph.D. thesis, University of Notre Dame, 1947.
W. P. Thurston, The geometry and topology of three-manifolds, Princeton University Princeton, NJ, 1979.