Publié-e
Spectral properties of compressible stratified flows
Propiedades espectrales de los flujos estratificados comprimibles
Mots-clés :
Partial differential equations, Essential spectrum, Sobolev spaces, Stratified fluid, Internal waves, 2000 Mathematics Subject Classification. 35Q35, 35B05, 35P05, 76026 (en)Ecuaciones diferenciales parciales, Espectro esencial, Espacios de Sobolev, Líquido estratificado, Ondas internas (es)
Téléchargements
Abstract. For bounded and unbounded domains in R3, we establish the localization and the structure of the spectrum of normal vibrations described by systems of partial differential equations modelling small displacements of compressible stratified fluid in the homogeneous gravity field. We also compare the spectral properties of gravitational and rotational operators. Our main result is the construction of Weyl sequence for the essential spectrum, which is an explicit form of non-uniqueness of the solutions.
Para los dominios acotados y no-acotados en R3, estudiamos la localización y la estructura del espectro de las vibraciones normales que se describen mediante sistemas de ecuaciones en derivadas parciales que modelan los movimientos pequeños de un líquido estratificado comprensible en el campo gravitacional homogéneo. También comparamos las propiedades espectrales de los operadores rotacionales y gravitacionales. Nuestro resultado principal es la construcción de la sucesión de Weyl para el espectro esencial, la cual representa explícitamente la no-unicidad de las soluciones.
Références
Agmon, S., Douglis, A., and Nirenberg, L. Estimates near the boundary for solutions of elliptic differential equations. Comm. Pure and Appl. Mathematics 17 (1964), 35-92.
Bogovskii, M. Decomposition of l2 - Dokl. Akad. Nauk. 286 (1986), 781-786. (in Russian).
Brekhovskih, A., and Goncharov, V. Introduction to the mechanics of continuous media. Nauka, Moscow, 1982. (in Russian).
Calderón, A., and Zygmund, A. On singular integrals. Amer. J. Math. 78 (1956), 289- 309.
Copson, E. T. Asymptotic Expansions. CUP, Cambridge, 2004.
Gabov, S., and Sveshnikov, A. Dynamic problems for the stratified fluids. Nauka, Moscow, 1986. (in Russian).
Giniatoullin, A. An introduction to spectral theory. R. T. Edwards, Philadelphia, 2005.
Giniatoulline, A. Sobre los sistemas elípticos en el sentido de Petrovski y en el sentido de Douglis-Nirenberg. Lect. Mat. 17 (1996), 37-47.
Giniatoulline, A. On the uniqueness of solutions in the class of increasing functions for a system describing the dynamics of a viscous weakly stratified fluid in three dimensional space. Rev. Colombiana Mat. 31 (1997), 71-76.
Giniatoulline, A. On the essential spectrum of the operators generated by PD E systems of stratified fluids. Intem at. J. Computer Research 12 (2003), 63-72.
Giniatoulline, A. Essential spectrum of the operators generated by PDE systems of stratified fluids and Zp-estimates for the solutions. Intern. J. Comput. Science and Appl. 2 (2005), 38-56.
Giniatoulline, A., and Rincón, C. On the spectrum of normal vibrations for stratified fluids. Computational Fluid Dynamics J. 13 (2004), 273-281.
Grubb, G., and Geymonat, G. The essential spectrum of elliptic systems of mixed order. Math. Ann. 227 (1977), 247-276.
Kato, T. Perturbation theory for linear operators. Springer, Berlin, 1966.
Kolmogorov, A., and Fomin, S. Elements de la théorie des fonctions et de I’analise fonctionelle. MIR, Moscu, 1977.
Maslennikova, V. About asymptotic decay of the solutions of Sobolev viscous system. Mat. Sbomik 134 (1973), 49-60.
Maslennikova, V., and Giniatoulline, A. Spectral properties of operators for systems of hydrodynamics. Siberian Math. J. 29 (1988), 812-824.
Maslennikova, V., and Giniatoulline, A. On the intrusion problem in a viscous stratified fluid for three space variables. Math. Notes 51 (1992), 374-379.
Riesz, F., and B.Sz.-Nag. Functional Analysis. Fr. Ungar, N.Y., 1972.
Sobolev, S. On a new problem of mathematical physics. Izv. Akad. Nauk. Ser. Mat. 18 (1954), 7-50. (in Russian).
Szekers - Zenkovic, S. Construction of the fundamental solution for the operator of inner waves. Dokl. Akad. Nauk. 246 (1979), 286-288. (in Russian).
Talenti, G. Spectrum of the laplace operator acting in lp (r^n). Symposia Mathematica, Istituto Nazionale di Alta Matematica 7 (1971).