Publié-e
Unmixed bipartite graphs
Grafos bipartitos sin mezcla
Mots-clés :
Unmixed graph, Minimal vertex cover, Bipartite graph, König theorem, 2000 Mathematics Subject Classification. 05C75, 05C90, 13H10 (en)Grafos no-mezclados, Cubrimiento de vértices mínimo, Grafos bipartitos, Teorema de König (es)
Téléchargements
Abstract. In this note we give a combinatorial characterization of all the unmixed bipartite graphs.
En esta nota nosotros presentamos una caracterización combinatoria de todos los grafos bipartitos no-mezcladas.
Références
Berge, C. Some common properties for regularizable graphs, edge-critical graphs and b-graphs. In Theory and practice of combinatorics, G.S. J.T.A. Rosa, Ed., vol. 60. North-Holland Math. Stud., Amsterdam, 1982, pp. 31-44.
Estrada, M., and Villarreal, R. H. Cohen-Macaulay bipartite graphs. Arch. Math. 68 (1997), 124-128.
Harary, F. Graph Theory. Addison-Wesley, 1972. Reading, MA.
Herzog, J., and Hibi, T. Distributive lattices, bipartite graphs and Alexander duality. J. Algebraic Combin. 22, 3 (2005), 289-302.
Morey, S., Reyes, E., and Villarreal, R. H. Cohen-Macaulay, shellable and unmixed clutters with a perfect matching of König ty p e. J. Pure Appl. Algebra. To appear.
Plummer, M. D. Some covering concepts in graphs. J. Combinatorial Theory 8 (1970), 91-98.
Ravindra, G. Well-covered graphs. J. Combinatorics Information Syst. Sci. 2, 1 (1977), 20-21.
Villarreal, R. H. Cohen-Macaulay graphs. Manuscripta Math. 66 (1990), 277-293.